
Automated Testing at the GUI level

Hands-on do it yourself manual

T *
ar.orgest

2023

The TESTAR team

Last updated: 23/05/2023 at 19:09.

TESTAR research is funded by the following projects.

ITEA3 TESTOMAT Project will support software teams to strike the
right balance by increasing the development speed without sacrificing qual-
ity. The project will ultimately result in a Test Automation Improvement
Model, which will define key improvement areas in test automation.

https://www.testomatproject.eu/

DECODER builds an Integrated Development Environment that combines
information from different sources through formal and semi-formal models
to deliver software project intelligence to shorten the learning curve of
software programmers and maintainers and increase their productivity.

https://www.decoder-project.eu/

Extended Reality (XR) systems are advanced interactive systems such as
Virtual Reality (VR) and Augmented Reality (AR) systems. IV4XR aims
to build a novel verification and validation technology for XR systems with
AI techniques to provide learning and reasoning in a virtual world.

https://iv4xr-project.eu/

IVVES will systematically develop Artificial Intelligence approaches for
robust and comprehensive, industrial-grade V&V of “embedded AI”, i.e.
machine-learning for control of complex, mission-critical evolving systems
and services covering the major industrial domains in Europe.

https://ivves.weebly.com/

ENACTEST project works on identifying and designing early and seam-
less teaching materials for testing that are aligned with industry needs
and which take into account also the learning needs and characteristics of
students.

https://enactest-project.eu/

2

Contents

Glossary 7

1 What is TESTAR 8

2 Preparation and installation of TESTAR 9

2.1 Running TESTAR on a server . 9

2.2 Download and install a virtual machine image 9

2.3 Installing TESTAR . 10

2.4 Java versions . 11

2.5 Quick tips . 12

3 Testing at the GUI level 14

4 Getting TESTAR running 15

4.1 Starting up TESTAR . 15

5 Introduction to TESTAR’s Settings Dialogue 16

5.1 SPY Mode . 19

5.2 GENERATE mode . 21

5.3 Test Results and Reports . 23

5.4 VIEW Report Mode . 25

5.5 REPLAY mode . 28

5.6 The test.settings file . 28

6 Customizing the TESTAR test sequences 31

6.1 Adding knowledge about the SUT - Regex Action filtering 31

6.2 Adding knowledge about the SUT - SPY Action filtering 33

6.3 Adding knowledge about the SUT - Test Oracle 34

3

6.4 Specifying oracles to detect suspicious process output 36

6.5 Changing the way actions are derived . 37

6.6 Changing the way actions are selected . 39

7 Connect with the System Under Test 43

7.1 Types of SUT connectors . 43

7.2 Execute TESTAR from the command line 45

7.3 Create a custom protocol . 46

8 Testing web applications with TESTAR 50

8.1 Installing the Selenium Webdriver . 50

8.2 Settings for TESTAR to test web applications 52

8.3 Adding knowledge about the SUT - specific input actions 53

8.4 Adding knowledge about the SUT - login to parabank 55

8.5 System specific input actions - deriveActions() 57

8.6 Webdriver oracles to detect suspicious browser console messages 59

8.7 Webdriver DomainsAllowed . 61

8.8 Webdriver DeniedExtensions . 63

8.9 Policy and cookies panels . 65

8.10 Webdriver clickable elements . 67

9 Advanced TESTAR Oracles 70

10 TESTAR State Model 74

10.1 Install OrientDB . 74

10.1.1 Option 1: Use a configured TESTAR OrientDB 74

10.1.2 Option 2: Manual configuration of OrientDB 75

10.2 Configure TESTAR State Model settings 76

10.2.1 OrientDB connection mode . 78

10.2.2 Other State Model settings . 79

4

10.3 State Model Analysis . 81

10.4 State Model Abstraction . 82

10.4.1 State Model Advanced setting . 84

11 Android systems 86

11.1 Preparing a mobile environment . 86

11.2 Installing Appium . 87

11.3 Testing a local Android Application Package 88

11.4 Testing a remote Android Application Package 91

A Troubleshooting with Java versions 92

B Windows Screen Scaling Settings 93

C ActionDuration test.setting 95

D CAPS LOCK event for SPY mode filtering 96

E What is a regular expression and what it can do? 97

E.1 Regex mastery . 97

F Keyboard actions and the CompoundAction builder 98

G Failure BINGO! 99

H Keyboard shortcuts 100

I Directories 101

J Test settings 102

Index 105

5

About this Hands-on

For whom is this document?

This manual is meant for students and interested parties, to be used as an introduction
to the TESTAR tool for automated testing through the Graphical User Interface (GUI).

How to read this document

This document contains tasks to familiarize oneself with TESTAR’s workings. A task is
marked like this:

�¥ hands-on 0

A task to perform.

Instructions on how to perform the required action(s).

6

Glossary

API Application Programming Interface: a set of rules and specifications with which
software can communicate with other software to access and make use of services
and resources. 50, 93

Graphical User Interface (GUI) The graphical part of a program. 6, 8, 14, 16, 17,
19, 21, 22, 25, 26, 28, 34, 37, 38, 59, 60, 70, 74, 79, 82

GUI testing A testing technique where one tests the SUT solely through its GUI. 8

oracle The mechanism that determines whether a test has succeeded or failed. 18, 21, 22

Regular Expression (RegEx) . 32

sequence A series of actions for the purpose of testing. 17, 22
System Under Test (SUT) The application that is being tested. 8, 14, 16, 17, 19,

21–25, 27, 31, 33, 35, 43–45, 50, 53, 57, 70, 74, 81, 82, 93, 102–104

User Interface (UI) . 22, 95, 100–104

Virtual Machine (VM) The aspects of a program that allows humans to interact with
it. 9, 10, 15, 22, 34, 93, 96

widget An element of interaction in a GUI, such as a button, a text field, or a scroll bar.
19

7

SECTION 1

What is TESTAR

TESTAR1 is an open source2 tool that implements a scriptless approach for completely
automated test generation at the Graphical User Interface (GUI) level for Web and Win-
dows desktop applications.

Figure 1: TESTAR underlying principles

TESTAR is based on agents that imple-
ment various action selection mechanisms
and test oracles. The underlying principles
are very simple: generate test sequences
of (state, action)-pairs by starting up the
System Under Test (SUT) in its initial
state and continuously selecting an action
to bring the SUT into another state that is
checked by oracles for failures.

The action selection characterizes the fun-
damental challenge of intelligent systems:
what to do next. The difficult part is op-
timizing the action selection to find faults
and recognizing a faulty state when it is
found. Faulty states are not restricted to
functionality errors, but also violations of
other quality characteristics, like accessibil-
ity or security, can be detected by inspecting the state.

TESTAR shifts the paradigm of GUI testing: from developing scripts to developing intel-
ligent AI-enabled agents.

1https://testar.org/
2https://github.com/TESTARtool/TESTAR_dev

8

SECTION 2

Preparation and installation of TESTAR

To be on the safe side, you should run TESTAR within a Virtual Machine (VM). TESTAR
can do random things, and this way, you make sure you do not break anything in your
operating system. For example, when testing an application like Notepad, TESTAR can
randomly interact with the system files through Notepad Windows Explorer features. To
configure TESTAR to avoid these random things, the user needs to pay attention to this
HandsOn guide ;)

There are two options to try out TESTAR in a VM:

• Run TESTAR in a remote VM that runs on one of our servers. You can access
the VM through the browser (you need to request credentials, see 2.1 “Running
TESTAR on a server” on this page)

• Download an (OVA) image of a VM and install it on your local machine (see 2.2
“Download and install a virtual machine image” on the current page and 2.3 “In-
stalling TESTAR” on the following page)

If you have your own Virtual Machine, then you can download and execute the TESTAR
binaries directly (see 2.3 “Installing TESTAR” on the next page)

2.1 Running TESTAR on a server

We use Apache Guacamole3, a clientless remote desktop gateway, to enable a remote
connection to a VM desktop using a web browser. This is called clientless because no
plugins or client software are required.

For this option, you have to request a server address and credentials. This will allow you
to connect to a TESTAR VM with all the required software already installed using your
web browser. This can be done by sending an email to info@testar.org with the subject
“TESTAR remote VM connection request”.

To log in, go to https://qdesktop.testar.org/ and enter your assigned username and
password. Once you are connected to the virtual machine, you can enable the clipboard-
sharing permissions in the search bar of the browser.

2.2 Download and install a virtual machine image

A Virtual Machine (OVA) image is available with all the required software already in-
stalled. To run the image, you need to have VirtualBox version 5.2.18 or later. If you do
not have VirtualBox 5.2.18 on your machine, you can download it here:
https://download.virtualbox.org/virtualbox/5.2.18/

If you have a newer version (> 5.2.18) of VirtualBox installed, you might need to update

3https://guacamole.apache.org/

9

the “VBox Guest Additions” on the image to the same version as your VirtualBox version.
Please refer to the VirtualBox manual on how to do this.

Minimal resource requirements for the VirtualBox host:

• VirtualBox version ≥ 5.2.18
• Recent Dual core CPU or better
• 8 GB Memory
• about 80 GB of free disk space

The hands-on OVA image can be downloaded from the TESTAR website:

https://testar.org/images/<image name>

You will be given <image name> during the training-sessions. If you are doing the hands-
on on our own, please send an email to info@testar.org to obtain the latest image or
check from https://testar.org/download/ and look for the latest OVA image.

NOTE: The OVA image is about 22GB downloaded and takes up about 50GB once the
virtual machine is created. It will grow in size with usage and is maximized at 200GB,
but with normal usage it should not grow beyond 60GB during this hands-on.

�¥ hands-on 1

Set up and run the Virtual Machine in VirtualBox. Log in as the “testar” user.

Import the downloaded OVA image in VirtualBox via “File” → “Import Appli-
ance”. Use the account below to log in on the VM:
username: ”testar”
password: ”testar”

2.3 Installing TESTAR

To run TESTAR locally on your own computer, you can download the testar <version
number>.zip from the TESTAR website and unpack the zip file into the C:\ directory
with the instructions below.

�¥ hands-on 2

On your own VM, download and unpack the TESTAR zip.

• Go to https://testar.org/download/

• Download the latest TESTAR zip distribution “TESTAR master latest bi-
naries”.

• Go to the windows downloads directory and right-click on the just down-
loaded testar <version number>.zip file. Select the “Extract ALL” option
in the menu. (see Figure 2)

• Select for the destination directory C:\ . Click the “Extract” button, this
will extract the testar <version number>.zip file, the installation can be

10

found in C:\testar\ (see Figure 3)

Figure 2: Right click and select “Extract all”

Figure 3: Unzip testar <version number>.zip file in windows

2.4 Java versions

We are currently maintaining TESTAR to support three main Java versions:

1. Java 8 is implemented into two products: JDK 8 (Java SE Development Kit 8) and
JRE 8 (Java SE Runtime Environment 8). The runtime execution and compilation
of TESTAR protocols require the installation of Java 8 JDK

11

2. Java 11 JDK contains all the TESTAR requirements. This is currently the recom-
mended version to follow these Hands-On exercises.

3. Java 17 JDK contains almost all the TESTAR requirements. However, this version
does not include the Nashor Script Engine feature in the Java package, which pro-
vokes the use of the Edit Protocol feature without highlighting code with colors (but
it is still a functional feature).

2.5 Quick tips

Before starting, we want to show you a trick to open a command prompt in the selected
Windows directory. Figure 4 indicates how typing “cmd” or “cmd.exe” in the explorer
bar allows users to open the command prompt in the testar\bin\ directory quickly.

1. Locate testar\bin\ directory

1. Locate directory
2. Type cmd.exe in the explorer bar

Figure 4: How to open a command prompt in a Windows directory

12

Conversely, Figure 5 indicates how typing “start .” in a command prompt allows users to
open a Windows Explorer directory.

1. Type start . in the command prompt

Figure 5: How to open a Windows Explorer directory from a command prompt

13

SECTION 3

Testing at the GUI level

�¥ hands-on 3

As a vehicle to explain different parts of TESTAR, we will use a simple Calculator
as SUT. We have prepared the Calculator Java application with several faults. To
get a first impression of this SUT, this task will ask you to test the Calculator
program manually at the GUI level. How many and what type of failures can you
find?

The Calculator is found in the testar\bin\suts\Calculator.jar folder as part
of the TESTAR binaries. To start up the Calculator, open a command prompt in
the testar\bin\suts directory and type:

java -jar suts\Calculator.jar.

You will see a desktop application looking like this:

TS Note: If you found some Java troubleshooting you can find help in the
APPENDIX section A.

14

SECTION 4

Getting TESTAR running

4.1 Starting up TESTAR

In the bin directory of the unpacked testar-directory, there is a testar.bat. If you are
using the Virtual Machine, you can use the shortcut on the desktop instead.

�¥ hands-on 4

Start TESTAR by running testar.bat

Run a command prompt at the location testar/bin/, type in testar.bat, and
press Enter .

The first time TESTAR is executed, the tool does not have any selected protocol
configuration. When this happens, TESTAR opens a dropdown box for the user
to select a protocol. You can select the 01 desktop calculator protocol:

After selecting, the TESTAR Dialogue will appear like this:

Try not to click anywhere on the TESTAR Dialogue yet. First, you should read the
next section which gives a short introduction about the impressions that TESTAR
Settings Dialog offers to the users.

TS Note: If everything worked as described above and the TESTAR Dialogue
has started up, then continue with section 5. If not, some troubleshooting help
can be found in the APPENDIX section A.

15

SECTION 5

Introduction to TESTAR’s Settings Dialogue

Now that we have the TESTAR Dialogue running, in the following sections, we are going
to start from the surface and continue to dive deeper into the mysteries of TESTAR, on
the journey to becoming an advanced user.

The Settings Dialogue is a representation of the settings and configuration of TESTAR.
It provides a visual way for configuring the values that are present in the test.settings file.
These settings define details for TESTAR on how to test a specific SUT.

As you can see in Figure 6, we are going to start by introducing the five different “sections”
of the General functionality (colored accordingly in the Figure below).

TESTAR execution modes:

Spy, Generate, Replay,
View Reports, View Models

TESTAR
settings

customization

TESTAR SUT connector:
Connect with the desired application

you want to test

TESTAR protocol:
Use default implementations

or customize yourself

TESTAR test iterations:
How many iterations

How many actions each iteration

Figure 6: TESTAR’s Settings Dialogue

TESTAR execution modes (Yellow) :
These icons represent the different modes that you can use to inspect or test the
desired application/SUT. In order, these are:
SPY (Check the SUT widgets that TESTAR can recognise at the GUI level
GENERATE (Generate test sequences automatically)
REPLAY (Re-execute an existing test sequence)
VIEW REPORTS (See an action-by-action HTML sequence report)
VIEW MODELS (See the inferred TESTAR State Models)

16

TESTAR settings customisation (Purple) :
Consists of tabs that we can use to navigate and customise different settings, like,
for example:

• General Settings
• Filters
• Oracles
• Time Settings
• etc.

In Figure 6 the “General Settings”-tab is selected, and there we can see, for example, the
following options that can be configured:

TESTAR SUT-connector (Green) :
Here we will define which application or System Under Test (SUT) we want to test
and how to connect with it.
In Figure 6, we can see the default is to connect through COMMAND_LINE.
The SUT that is selected can be started up through the command line by the fol-
lowing command: java -jar suts/Calculator.jar

This indicates to TESTAR that you want to launch and connect to the executable
of a Java Calculator.
More details on connecting to SUT can be found in Chapter 7.

TESTAR tests iterations (Blue) :
These are settings for GENERATE mode to choose how many sequences you want
to generate and how many actions each sequence will contain.

TESTAR protocol (Red) :
A TESTAR protocol is a Java class that is responsible for executing the different
parts of TESTAR’s workflow for generating test-sequences that we saw before:

Figure 7: TESTAR’s workflow

• (1) Obtaining the GUI state (get state).
• (2) Deriving the set of actions that a potential user can execute in that specific
state (derive actions).

• (3) Selecting one of these actions (select action).
• (4) Executing the action (execute action).

17

• (5) Evaluating the new state using existing oracles to find failures (get verdict).

The “Always compile protocol” checkbox indicates whether the protocol must be
compiled at run-time before starting a TESTAR execution mode. It can be modified
by accessing the Java sources in an editor that opens through the “Edit Protocol”
button in the Dialogue. You can, of course, use your own Java IDE to edit the source
code. The source code allows you to write much more fine-grained implementations
of the methods implementing the workflow.
From the drop-down menu “Protocol”, we can select the protocol we want to use
for testing. In Figure 6, we selected 01 desktop calculator protocol. Other protocols
like 02 webdriver parabank for web applications (see section 8) or android generic for
Android systems (see section 11) will be used later.

Figure 8: The protocol editor

�¥ hands-on 5

Explore the TESTAR protocol

With the 01 desktop calculator protocol selected, click the “Edit Protocol” button
in the in the “General Settings”-Tab of the TESTAR Dialog. The protocol editor
will open. You will see something like this in Figure 8.

Browse through the code and try to find the methods that are implementing
TESTAR’s workflow from Figure 7:

18

• get state

• derive actions

• select action

• execute action

• get verdict

If you do not understand the code, do not worry for now. The objective is now to
recognize where the main workflow of TESTAR is implemented and could poten-
tially be changed by you as the tester.

In the next section, we will start looking at the SPY mode: it enables us to spy the buttons
and other widgets of the SUT and see all the information that TESTAR is able to extract.

5.1 SPY Mode

�¥ hands-on 6

Inspect a SUT with the SPY mode

Now, within the 01 desktop calculator protocol, click on the SPY button on the
top left side of the TESTAR Dialogue (the one with the magnifying class). Hover
over the different parts of the GUI and look for yourself.

TS Note: If you have not been able to correctly detect the widgets with the
mouse (by moving it to widgets screen coordinates), check the instructions in
Appendix B.

The SPY mode helps you to configure TESTAR by allowing you to inspect the widget
controls of the GUI. In spy mode, you can:

• See what actions TESTAR is able to derive and choose from. The green dots (like
in Figure 9) represent the available widgets a user can click on in that specific state
of the GUI.

• Hover over an element to show the properties and information of that element or
widget, like in Figure 10. NOTE: Maximise button does not have a green dot because
TESTAR detects that the button is not Enabled (see Figure 11).

• Press Shift + ↑ to show extended information and properties while hovering over
an element. This way, you can find more details, for example, about the titles of the
elements. To go back to less information, just press Shift + ↑ again.

To leave SPY mode and return to the TESTAR start-up dialog, press Shift + ↓ , or close
the system you were spying.

19

Figure 9: Calculator in SPY mode

Figure 10: Calculator in SPY mode hover over elements

Figure 11: Calculator in SPY mode shows that Maximise is not Enabled

20

5.2 GENERATE mode

In this mode, the TESTAR tool carries out automated testing following the test workflow
we saw already in Figures 1 and 7. In Figure 12 you can find an extended version of this
workflow.

START
SUT

SCAN GUI
OBTAIN STATE

CHECK STOP
CONDITION

STOP
SUT

SUT

ORACLE
(EVALUATE STATE)

MORE
SEQUENCES?

Yes

SELECT
ACTION

Action
Selection

Rule

DERIVE SET OF
USER ACTIONS

Action
Definitions
& Filtering

EXECUTE
ACTION

Online
Oracle

Definition
SUT

Yes

No

SAVE TEST
SEQUENCE
LEADING TO

FAILURE

In case
of failure

GUI STATE
GRAPH

DATABASE
Query for

Offline
Oracles

Update

Figure 12: TESTAR test flow

Again, you can see, after starting the SUT, recognise the workflow:

• Obtaining the GUI state (get state).
• Deriving the set of actions that a potential user can execute in that specific state
(derive actions).

• Selecting one of these actions (select action).
• Executing the actions (execute action).
• Evaluating the new state using the oracles to find failures (get verdict).

Basically, TESTAR derives a set of possible actions for the current state that the GUI of
the SUT is in, such as clicking on the elements that we have visualized with the green
dots. Then, it automatically selects and executes an action from this set which makes the
SUT go to a new GUI state. This new state is evaluated with the available oracles. If no
failure is found, again, a set of possible actions for the new state is derived, one action
is selected and executed, etc. This loop continues until a failure is found or a stopping
criterion is reached. With the proper test setup, all you will need to do is to wait for your
tests to finish.

The default behavior includes a random selection of actions and implicit oracles for the

21

detection of the violation of general-purpose system requirements:

• the SUT should not crash,
• the SUT should not find itself in an unresponsive state (freeze), and
• the User Interface (UI) state should not contain any widget with suspicious titles
like error, problem, exception, etc.

Now we are ready to do some automated testing with TESTAR. With random action
selection, these are known as monkey tests. TESTAR can see the controls of the SUT’s
UI and automatically detect possible actions. It randomly selects and executes these
actions.

�¥ hands-on 7

Trying out the TESTAR tool as a “dumb monkey”, using purely random action
selection strategy and only the default test oracles by generating test sequences
for the Calculator SUT.

Let us alter the TESTAR configuration to start this Calculator application in the
“General Settings”-Tab:

• Check it is selected, or select the SUT connector COMMAND_LINE from the
drop-down and type the following SUT in the textbox:
java -jar suts/Calculator.jar

• Configure the number of test sequences you want to generate and the length
(i.e., number of actions) of these sequences. Since we are learning the tool,
let us not put too many. Select, for example, 5 sequences of 20 actions.

• Turn on the visualization by checking the corresponding checkbox.

Now, click on the GENERATE button (the icon with multicolored arrows) to
start running tests as specified by the test setup. See what happens with the
Calculator during the test runs. Even the generic test oracles should find some
crashes.

The following color codes are applied for visualization during the test:

• green dots for UI actions that TESTAR can detect and execute, and
• gray dots for UI actions that TESTAR can detect but are filtered, and
• red dot for the currently selected UI action being executed.

Warning: It is good to realize that random GUI testing may have strange results,
for example, if the SUT permits to open, save, or delete system files. Often, it is
safer to run random testing on a Virtual Machine that can be easily restored if

22

something breaks. TESTAR has some safety measures to prevent this, but better
be safe than sorry.

TS Note: If TESTAR does not execute in the correct coordinates of the selected
red dot action you can find help in the APPENDIX sections B and C

When the tests have finished, we can inspect the results of our tests. This is explained in
the next section.

You could also go through the generated HTML reports to see what kind of screenshots
were found during the test runs and whether there are screens that look like a failure. You
should be able to see dialogs that you would report as bugs.

5.3 Test Results and Reports

When a test run has finished, we can inspect the results in the \testar\bin\output\

directory. It looks, for example, like this:

The names of the folders have the format (timestamp = yyyy-mm-dd hh-mm-ss)

timestamp_SUTname

�¥ hands-on 8

Find the location where the results of a test run are stored.

The results of our tests are stored in the directory:

\testar\bin\output\

There you will see the generated folder for the test run that starts with a date,
then a time, and then the name of the SUT (i.e. Calculator). If you open the
folder, you will probably see different folders like:

23

The HTMLreports, logs, scrshots, and sequences folders contain the 5 sequences
you just run in different formats that will be explained below.

By default, TESTAR will try to obtain the name of the SUT application (i.e., SUTname)
by reading the path of the executed application. However, sometimes, when more clear
names are desired, it can be better to configure the name in the “Application name” field
in the “General Settings”-Tab of the TESTAR Dialogue.

�¥ hands-on 9

Change the name of the folder containing the test results.

In the Dialogue, go to the “General Settings”-Tab and find the following in the
“Application” fields (see also Figure 6).

Put a new name for the Calculator SUT and run some tests again. When the
tests have finished, go to the \testar\bin\output\ directory and see that now a
folder has been created with the name you have chosen for the application.

Try the same with the version number.

The folders inside the directory \testar\bin\output\ directory contain all reports and
sequences that TESTAR generated during the test run the folder represents. The reports
and sequences results can be divided into up to 8 directories as you can see below for a
test-run with the Calculator:

24

Below we will discuss the contents of each of the directories next, then we will VIEW and
REPLAY some of the sequences to actually see the results.

HTMLreports This folder contains HTML reports detailing the different states, widgets
and actions that were found and executed by TESTAR during the run.

logs Details about the executed actions and their attached Widget in plain test format.
scrshots This folder contains the screenshots of the GUI state taken by TESTAR through-

out the execution of actions.
sequences This folder contains all the sequences that have been executed by TESTAR.

The files in these directories are binary files (with the extension .testar) and can
only be read by TESTAR in REPLAY mode. We will look at this mode in the next
section.

sequences ok This folder contains all those sequences from the folder sequences that
have not resulted in failure.

sequences suspicioustitle This folder contains all those sequences from the folder se-
quences that have triggered the suspicious title oracle and resulted in failure.

sequences unexepectedclose This folder contains all those sequences from the folder
sequences that resulted in a crash.

sequences unresponsive This folder contains all those sequences from the folder se-
quences that resulted in the SUT being unresponsive.

TESTAR also generates a summary log report that contains the timestamp, directory, file
and result of all the executed sequences. (NOTE: this file will be created from the first
run on and extended each run).

\testar\bin\index.log

And a set of detailed logs to investigate what happened during the execution of a specific
sequence. You can find these in:

\testar\bin\output\timestamp_SUTname\logs

These logs, especially the index.log, could be useful to integrate TESTAR tool and the
results of the sequences into a CI pipeline.

5.4 VIEW Report Mode

The execution of the VIEW mode opens a pop-up that allows you to select the HTML
report of the sequence you want to view.

In this mode, you can choose an HTML report of the sequence or a plain text .log file.
TESTAR will use the default system applications defined as a visualization tool (Microsoft
Edge and Notepad into the Virtual Machine) to open the selected files.

For example, in Figure 13, you can see the HTML report of or a test sequence executed
with the buggy calculator that contains the obtained information by TESTAR about the
founded States, Widgets, and available Actions.

A TESTAR sequence can generate an extensive HTML report due it includes all step-by-
step states and derived actions. For this reason, the top-left corner of the HTML report

25

allows users to reverse the order in case they wish to check the final Oracle quickly.

Figure 13: Visualize HTML report

�¥ hands-on 10

View the HTML results of a test run of the Calculator.

Start up TESTAR and click the VIEW Report button on the TESTAR GUI.
Select the HTML one of your previously executed test sequences, and browse
through it to observe the information it provides for you.

26

1 2

3

4

Now open an HTML related to a sequence that ended with an unexpected close.
Why did the SUT close unexpectedly?

One reason can, for example, be the following buggy behavior:

TESTAR selected the action Left Click at ’Digital Grouping’ which con-
tains an internal failure that crashes the Calculator.

However, another example can be the following false positive behavior:

TESTAR selected the action Left Click at ’Cerrar’, meaning it clicked the
close button (cerrar in Spanish) and closed the SUT.

27

This second false positive action is, evidently, undesired and not optimal for the
testing process. You can see that TESTAR detects it as a “crash” whenever it
closes the main window. Obviously, the tool does not know that closing the main
window terminates the application. The human tester does know that. Later on,
we can see how we can filter out the selection of these undesired actions.

�¥ hands-on 11

View the log results of a test run.

Start up TESTAR and click the VIEW Report button on the TESTAR GUI.
Browse to the logs directory and select the log of one of your previously executed
test sequences. Try to understand the information that the file is presenting to
you.

5.5 REPLAY mode

When you click the REPLAY button, a file explorer window allows you to select the
sequence that you want to replay or view.

The REPLAYmode can replay sequence files that end with the extension .testar. These
files.testar are those that can be found in the directories of the different sequences.

REPLAY will play the saved sequence again, repeating the same actions executed pre-
viously. This can be used to verify that a correct sequence (sequences_ok) still running
without failure after the release of a new version, or to check that the found failures are
solved with a fix release.

�¥ hands-on 12

Replay the sequence of a test run.

Start up TESTAR and click on the REPLAY button on the top right side of the
TESTAR GUI. Select a .testar sequence of your previously executed test sequences
and replay it.

NOTE: If you select a failed sequence to be replayed, TESTAR will probably find
the same failure again.

5.6 The test.settings file

As indicated before, the start-up Dialogue of TESTAR enables us to easily configure the
values that are present in the test.settings file. These files, however, can also be edited
directly with a text editor. You can find the test.settings files under the settings folder in
TESTAR’s bin folder (\testar\bin\settings) Each test settings configuration is stored
inside a unique subfolder (e.g., 01 desktop calculator), which contains:

28

1. a Java source file (e.g., Protocol_01_desktop_calculator.java) with the pro-
grammable test protocol that implements the workflow.

2. a test.settings file, which contains a list of test properties.
3. you might also see a protocol_filter.xml file (this will be discussed later).

IMPORTANT: The TESTAR dialog accesses and edits both test.settings and Java protocol
files. If you have the dialog opened and try to change something in the test.settings or
Java protocol using, for example, Notepad++, these changes will not be saved. Therefore,
before manually editing the test.settings or Java protocol files, it is better to close the
TESTAR dialog.

In the settings directory we can see a file ending with the extension .sse. This file is used
to indicate from which folder TESTAR will choose the settings. This protocol selection can
be changed by editing the file.sse name directly or through the TESTAR user interface,
selecting the desired protocol from the corresponding dropdown-menu in the “General
Settings”-Tab.

If the .sse is not present in the settings folder, a dialogue like the one in Figure 14 will
start up to ask you to select the protocol that you would like.

Figure 14: TESTAR when started without an .sse file

If you want, you can also edit the files directly. For now, to illustrate, we refer to Figure
15, where you can see part of the test.settings file for the calculator application. More
settings are explained in detail in Appendix J.

29

###

TESTAR mode

#

Set the mode you want TESTAR to start in: Spy, Generate, Replay

###

Mode = Spy

###

Connect to the System Under Test (SUT)

#

SUTCONNECTOR = COMMAND_LINE, SUTConnectorValue property must

be a commandline that starts the SUT. It should work when

typed into a command prompt (e.g. java -jar SUTs/calc.jar). For

web applications, follow this format: web_browser_path SUT_URL.

#

SUTCONNECTOR = SUT_WINDOW_TITLE, then SUTConnectorValue property

must be the title displayed in the SUT’ main window. The SUT

must be manually started and closed.

#

SUTCONNECTOR = SUT_PROCESS_NAME: SUTConnectorValue property must

be the process name of the SUT. The SUT must be manually started

and closed.

###

SUTConnector = COMMAND_LINE

SUTConnectorValue = java -jar "suts/Calculator.jar"

###

Sequences

#

Number of sequences and the length of these sequences

###

Sequences = 5

SequenceLength = 20

Figure 15: Part of the test.settings file

�¥ hands-on 13

Find out the role of the .sse file.

Change the name of the .sse file to the name of one of the directories in the bin
folder (\testar\bin\settings). Now start up TESTAR again to see the effect.
What if you delete the .sse file?
NOTE: Using the .sse file may not seem significant when running TESTAR man-

ually. Still, it does have its importance when you want to invoke a TESTAR
protocol in an automated continuous integration environment.

30

SECTION 6

Customizing the TESTAR test sequences

TESTAR provides a couple of different ways to define system-specific instructions. We
will go through the basic ones in this section.

6.1 Adding knowledge about the SUT - Regex Action filtering

We saw before that, that from time to time, TESTAR could execute “undesirable” actions.
For example, actions that minimize the SUT or even close the SUT. We can configure
TESTAR to prevent the selection of these undesired actions by defining an action filter in
the test settings file. The action filtering can be used to tell TESTAR not to take some
actions during testing.

In the “Filters”-Tab you can find an input field that allows you to filter actions by defining
a regular expression. TESTAR will ignore all actions that exercise control elements whose
title matches the given regular expression. For example:

.*Backspace.*|.*CE.*|.*View.*

This expression will ignore clicks to all control elements whose titles contain the given
strings.

31

�¥ hands-on 14

Filtering action-widgets by defining Regular Expressions (RegExs).

In TESTAR Settings Dialog, first, check that you still have the following protocol
selected: 01_desktop_calculator

Let’s first use TESTAR SPY mode to check what actions TESTAR finds with the
current settings (without any filtering). In SPY mode, all the click actions have a
green dot to show where TESTAR would click to execute that action (or blinking
blue text to show textual input actions).

Open the “Filters”-Tab in Settings Dialog, and write the following regular expres-
sion into the upper text area:

.*Backspace.*|.*CE.*

Click the button Check Regex on the right side of the filtering text area to validate
that the regular expression contains a valid syntax. If it is correct, the button will
become green, if not, the button will become red, and the text area will highlight
the wrong regular expression character.

More instructions on using Java RegExs can be found in Appendix E.

Use TESTAR Spy mode again to check that the filter works as expected - the
green dots for Backspace and CE actions should have vanished:

32

�¥ hands-on 15

Filtering action-widgets by defining regular expressions.

The action-widgets we want to filter is the one that closes the SUT. Let us first
use the SPY mode to find out what its title is such that we can filter that.

Using the SPY mode and hovering the mouse over the close button, you will find:

The title of the button is “Cerrar” in Spanish (or “Close” if you are using the
English language).

Add the filter for this action and verify with SPY mode that the green dot has
vanished. Subsequently, run TESTAR in GENERATE mode and check whether
you still find failures caused by the undesirable actions that close the SUT.

6.2 Adding knowledge about the SUT - SPY Action filtering

You can also filter actions while in SPY mode by using the clickfilter-feature. CAPS LOCK

toggles the clickfilter-feature that enables you to filter actions by clicking on them in SPY
mode. This comes in very handy when setting up your tests. Once this feature is enabled,
you can just hover over the widget and press Ctrl to filter the actions on this widget from
being selected during testing (you don’t have to press the mouse button on the widget).

You can also undo the filtering by maintaining Shift + pressing Ctrl while hovering over a
filtered widget. If the action filter you specified with a regular expression in the “Filters”-
Tab was “too efficient”, you can unfilter a specific action this way. Filtered actions will
be stored in the file protocol_filter.xml that you can find in the current TESTAR’s
protocol folder (\testar\bin\settings\01_desktop_calculator).

In the next image, we can see a red square that surrounds the Minimize button, this is
because this action-widget has been filtered by pressing Ctrl when CAPS LOCK was toggled.
Furthermore, the Backspace button that was previously filtered with a Regex expression
now is surrounded with a green square, indicating that has been unfiltered by maintaining
Shift + pressing Ctrl while CAPS LOCK was toggled.

33

IMPORTANT: Due to problems sending the CAPS LOCK key event to a Virtual Machine, we
added an optional workaround to also be able to use the ALT key event to enable the SPY
filtering mode.

�¥ hands-on 16

Filtering action-widgets using the clickfilter

Start the calculator in SPY mode to visualize all the green dots (those are
the available, unfiltered actions). Then enable the clickfilter feature by pressing
CAPS LOCK and filter out some actions to see the effect of green dots disappearing.
Subsequently, open the protocol_filter.xml to see the effect of what you have
done.

What happens if you stop TESTAR, delete the protocol_filter.xml file, and
start TESTAR + SPY mode again?

TS Note: Due to problems sending the CAPS LOCK event to a Virtual Machine,
we added an optional workaround to also be able to use the ALT event to toggle
the filtering mode. Please read the APPENDIX section D.

�¥ hands-on 17

Filtering action-widgets

Configure TESTAR such that it does not maximize or minimize the window any-
more.

File -> Shut Down button is probably another action-widget you want to filter.

In addition, disallow clicks to the ”Open File” menu item to prevent TESTAR
from going wild on the operating system’s files.

Use the SPY Mode to see whether your action-widget filters have an effect.

6.3 Adding knowledge about the SUT - Test Oracle

Oracles are the mechanism that tells whether a specific GUI state is correct, faulty, or
suspicious. The default oracles implemented in TESTAR can find only certain types of
failures. In order to detect a wider variety of failures, TESTAR allows the user to define
application-specific oracles.

34

TESTAR provides different ways to define SUT-specific test oracles. Probably the easiest
one, called Suspicious Tags, allows you to define what kind of text is considered suspicious
in a Tag using regular expressions. TESTAR will use these expressions after the execution
of each action in order to find potential matches with the titles of the widgets. For example:

.*[Ff]aultystring.*|SomeOtherFaultyString

This expression will make TESTAR look for the string “Faultystring” (F letter upper- or
lowercase- [Ff]) anywhere on the screen in any position as well as for the exact match
“SomeOtherFaultyString”. If TESTAR encounters such a string, it will verdict a suspicious
tag output and save the corresponding sequence under:

\testar\bin\output\timestamp_SUTname\sequences_suspicious_tag\

�¥ hands-on 18

Adding oracles for suspicious tags using regular expressions

Select the “Oracles”-Tab in the TESTAR Settings Dialog. You will see that the
Title-tag has already been configured as the default tag to check:

Now define the following regular expression into Suspicious Tags text field:

.*[eE]rror.*|.*[eE]xception.*

Click the button Check Regex to verify the syntax.

Run some tests again with GENERATE and check whether your test oracles
detect the bugs. With correct definitions, the output folder of TESTAR should
now also include sequences suspicious tag folder.

�¥ hands-on 19

Adding more oracles for suspicious tags using regular expressions

During handson 3, you should have found some dialogs or screens that look like
a failure, in addition to crashes that TESTAR recognizes automatically. Use the
suspicious tag functionality to define more test oracles that catch those.

35

6.4 Specifying oracles to detect suspicious process output

Sometimes a SUT such as the Calculator can crash and close unexpectedly or throw
exception messages while running in the output and error buffers of its process. Figure 16
shows how clicking the View -> Scientific buttons, unexpectedly closes the Calculator
as it throws an ArithmeticException message in the command prompt.

Figure 16: Calculator process error exception

TESTAR can also listen to the output and error buffers of a desktop application’s process.
This is useful because it allows the tester to define oracles to detect Suspicious Process
Output by using regular expressions. For example, for catching exceptions that are printed
to standard/error output but have not been otherwise properly handled.

In order to use these features, we need to enable the process listeners. This can be done
in the test.settings file:
ProcessListenerEnabled = true

Or by activating the corresponding checkbox in the “Oracles”-tab in the TESTAR Dia-
logue:

To indicate the output that should be considered suspicious, the tester has to specify the
suspicious patterns with regular expressions in the same manner as the suspicious tag
oracles.

Currently, these oracles based on process listeners are only enabled for desktop applications
executed from the COMMAND_LINE option. When an oracle finds a suspicious output in the
process buffer, the execution of the test is stopped.

36

�¥ hands-on 20

Adding oracles for suspicious process output using regular expressions

Use the same regular expression also for Suspicious Process Output in the “Oracles”-
tab of the TESTAR Setting Dialog:

.*[eE]rror.*|.*[eE]xception.*

Enable the process listener by checking the box and run TESTAR inGENERATE
mode again to see whether your process output test oracles detect any additional
bugs.

Now the HTML report will include a message to indicate that the Verdict comes
from the Process Listener, and the output process information will be stored
according to its sequence in the new folder:

\testar\bin\output\timestamp_SUTname\logs\processListener\

6.5 Changing the way actions are derived

There are two main aspects that affect how TESTAR generates test sequences:

2. What possible actions are detected and derived from the GUI (that is defined in
derive actions function of TESTAR protocols), and

3. How to select from the possible actions (that is defined in select action function of
TESTAR protocols).

In this section, we will look at the way actions are derived. In the next section, we will
look at action selection.

So far in these exercises, we have used the following method to derive actions from the
widgets that are in a specific state:

37

deriveClickTypeScrollActionsFromTopLevelWidgets()

This method is called in derive actions in TESTAR’s protocol. It first collects the
following actionable widgets, i.e., those that:

• are enabled,
• not blocked by other widgets,
• not filtered by action filters, and
• on top of the GUI, i.e., not hidden under other widgets like for example pop-ups or
opened menus.

Then it derives the possible actions for these actionable widgets:

• left mouse click actions on all clickable widgets,
• pseudo-random input actions on all editable widgets, and
• random sliding actions on all widgets that have scroll bars.

�¥ hands-on 21

Find the code for derive actions in the protocol

Remember handson 5 where we explored the TESTAR 01 desktop calculator pro-
tocol. Click the “Edit Protocol” button in the Dialogue. The protocol editor will
open.

Browse through the code and try to find the methods that are explained above.

We can change this way of deriving actions to, for example, another function that is
available in TESTAR:

deriveClickTypeScrollActionsFromAllWidgets(actions, state)

38

This function considers actionable widgets those that are:

• are enabled,
• not blocked by other widgets,
• not filtered by action filters, and

It uses these to derive the actions.

�¥ hands-on 22

Change the protocol to derive all actions instead of only those on top.

Click the “Edit Protocol” button in the Dialogue. The protocol editor will open.
Adjust the code as needed, save, and compile the code.

Run again some tests with GENERATE and see if you can detect differences?

6.6 Changing the way actions are selected

TESTAR uses, by default, a random action selection algorithm (ASM) to select which
action to execute from all the derived actions. This is what makes scriptless testing tools
to be known as “monkey” testing tools.

Additionally to a random ASM, TESTAR implements various action selection algorithms
to make the decision of What action to select next? smarter. Figure 17 represents how the
ActionSelectorProxy architecture allows implementing smarter ASMs in the TESTAR to
become a “smart monkey” testing tool. Let us try the PrioritizeNewActionsSelector,
which keeps track of executed actions and compares available actions between the current
and previous state, prioritizing new and least executed actions.

derived actions:
- Click “File”
- Click “Edit”
- Type “31-31-1900”
- etc.

RandomActionSelector

Default ASM

ActionSelectorProxy

PrioritizeNewActionsSelector

QLearningActionSelector

UserCustomActionSelector …

Custom ASM

Figure 17: TESTAR action selector

39

�¥ hands-on 23

Change the action selection algorithm

We need to initialize an action selector proxy with the smarter action selection
algorithm. Then, track which actions have been derived, executed, and selected.
The following changes have to implement into the TESTAR protocol:

1 Add the following imports:

import org.testar.ActionSelectorProxy;

import org.testar.PrioritizeNewActionsSelector;

2 Add the following class variable to the protocol class:

private ActionSelectorProxy selector =

new ActionSelectorProxy(new PrioritizeNewActionsSelector());

3 Add the following line to the deriveActions() method, just before the return

actions = selector.deriveActions(actions);

40

4 Replace the whole body of the selectActions() method with this code:

Action action = selector.selectAction(state, actions);

if(action == null) action = super.selectAction(state, actions);

return action;

5 Add the following line to the executeAction() method, just before the return

selector.executeAction(action);

41

6 Click on the compile button to check the Java protocol is correct:

Run TESTAR in Generate mode with the protocol you edited (check that always
compile protocol option is on). The command prompt should print some additional
debugging information that helps users to track which action has been prioritized.

42

SECTION 7

Connect with the System Under Test

7.1 Types of SUT connectors

Until now, we have connected to the SUT through the COMMAND_LINE. In the “General
Settings”-Tab, that option was selected from the drop-down menu. In the text field we
indicated that the COMMAND_LINE-command to connect to the SUT was:

java -jar suts\Calculator.jar.

TESTAR offers a second option to connect to the SUT using the SUT_WINDOWS_TITLE

feature. When using SUT_WINDOWS_TITLE, the application should already be running
(started manually or started by another process) before starting TESTAR. Then TESTAR
will search for an application that has a main window with the indicated title.

�¥ hands-on 24

Connect using the SUT_WINDOWS_TITLE

For this section, we are going to use Notepad as the demo desktop application.

1 Launch the Windows Notepad desktop application in your system

2 Launch TESTAR and change to the desktop_generic protocol. Change the
SUTConnector dropdown to SUT_WINDOWS_TITLE and the value to connect to
Untitled or another value that matches your Notepad title language.

43

3 Run the SPY mode and verify TESTAR connects with Notepad after iterating
through system desktop applications.

The third option is to connect through the SUT_PROCESS_NAME. When using SUT_PROCESS_NAME,
the application should already be running (started manually or started by another pro-
cess) before starting TESTAR. When using SUT_PROCESS_NAME as the "SUT Connector",
TESTAR will search for a process with a process name matching the executable of the
SUT.

�¥ hands-on 25

Connect using the SUT_PROCESS_NAME

1 Launch the Windows Notepad desktop application in your system

2 Launch TESTAR and change to the desktop_generic protocol. Change
the SUTConnector dropdown to SUT_PROCESS_NAME and the value to connect
to notepad.exe process.

44

3 Run the SPY mode and verify TESTAR connects with Notepad. This connector
mode SUT_PROCESS_NAME is faster than the previous SUT_WINDOWS_TITLE.

To test Java applications, we do not recommend using the SUT_PROCESS_NAME connector.
This is because the process name of a Java application is java.exe or javaw.exe and
hence cannot be easily matched to find the correct SUT executable.

7.2 Execute TESTAR from the command line

TESTAR allows its execution and settings configuration from the command line. This
is needed when we want to add TESTAR to a Continuous Integration (CI) pipeline. By
default is executed with the selected protocol (.sse file) and the test.settings values of that
protocol.

From the command line, it is also possible to select the desired protocol to execute TES-
TAR and change the values of the test.settings. The protocol to be executed can be
selected using the “sse” parameter next to the name of the desired protocol. For example:

testar sse=desktop_generic

Other settings are input using the pairs “parameterX=valueX” separated by space. For
example:

testar ShowVisualSettingsDialogOnStartup=false Mode=Generate

Some of the most interesting parameters that can help to integrate TESTAR as a Contin-
uous Integration tool are:

sse: to select the desired protocol

ShowVisualSettingsDialogOnStartup: To run TESTAR without the dialog (this can be
considered mandatory)

Mode: TESTAR execution Mode (mostly used for CI is GENERATE)

SUTConnector and SUTConnectorValue: The way to link with the desired application to
be tested

Sequences and SequenceLength: The number of iterations and actions that TESTAR

45

will execute

NOTE: Certain characters, such as slashes or quotation marks, must be entered in a double
way to respect the treaty of special characters. For example:

SUTConnectorValue=" ""C:\\Windows\\notepad.exe"" "

�¥ hands-on 26

Simulate a Continuous Integration execution to test Notepad with TESTAR

1 Close TESTAR and open a command prompt in the \testar\bin\ directory

2 Type or paste the following settings in the command prompt. You need to
paste everything into one command line without line breaks.

testar sse=desktop_generic ShowVisualSettingsDialogOnStartup=false

Sequences=2 SequenceLength=5 Mode=Generate SUTConnector=COMMAND_LINE

SUTConnectorValue=" ""C:\\Windows\\notepad.exe"" "

Observe how TESTAR automatically runs without opening the dialog.

7.3 Create a custom protocol

Sometimes it is necessary to create new TESTAR protocols to configure the settings and
Java class in order to test different SUTs or to prepare multiple protocols to test different
parts of the same SUT. The only requirement to custom a new protocol is to create a new
folder with a Java and test.settings files inside the testar\bin\settings directory.
Then, update the name of the protocol in the Java class name + ProtocolClass setting
variable.

46

�¥ hands-on 27

Create a new TESTAR protocol

1 Close TESTAR if running.

2 Open the testar\bin\settings directory and copy paste the desktop_generic
folder.

3 Rename the new folder with desktop_custom name.

47

4 Open the folder desktop_custom and rename the Protocol_desktop_generic
protocol name with Protocol_desktop_custom name.

5 Open the Java class Protocol_desktop_custom and edit the class name to
match the filename.

6 Open the desktop_custom\test.settings file and edit the ProtocolClass

setting variable to match the custom folder and Java class.

48

7 Run TESTAR and verify that the new desktop_custom protocol can be se-
lected.

49

SECTION 8

Testing web applications with TESTAR

In addition to Windows accessibility API, TESTAR supports using Selenium WebDriver4

for testing web applications.

The TESTAR webdriver inspects the DOM and extracts the information via a (JS) web
extension, added to the browser. The Selenium webdriver acts as a bridge between the
browser and the webdriver module of TESTAR.

Apart from the improved detection of widgets on web applications, using the wedriver
module allows the user to use TESTAR ’natively’. As all interactions are on the browsers
viewport, it is not necessary to use a VM. The webdriver version of TESTAR is tested on 3
mayor platforms: Windows 10, OS X, and Linux. It has been tested with Chrome/Chromium,
Firefox, and Edge (Windows). That said, using Chrome seems to be the best option.

We will use an open-source web application Parabank (https://parabank.parasoft.
com/) as a SUT. It provides a new challenge for a test monkey - a login page that requires
a valid username and password.

We have prepared another TESTAR protocol for this exercise:

02 webdriver parabank

8.1 Installing the Selenium Webdriver

For TESTAR to be able to connect to a browser, it needs the Selenium Webdriver. It acts
as a bridge between TESTAR and the browser of your system. It is a W3C standard, and
is supported by the 3 biggest browsers : Chrome/Chromium, Edge and Firefox. Unless
there is a specific requirement for another browser, the driver for Chrome is recommended
as it has the best performance.

The drivers can be found here:

• Chrome/Chromium
https://chromedriver.chromium.org/downloads

• Firefox (Geckodriver)
https://github.com/mozilla/geckodriver/releases

• Edge (Microsoft Webdriver)
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/#downloads

In the indicated URLs, the different versions of the webdrivers are updated. When we are
going to select a version to download, it is important to consider the current version of
our browser (chrome://settings/help).

NOTE: If the versions are incompatible and you need to download a new chromedriver,
TESTAR will display a warning message.

4https://www.selenium.dev/

50

Figure 18: Chrome Browser version

Figure 19: Download Selenium ChromeDriver

Figure 20: Warning message: ChromeDriver version error

51

For all variants, it is important to download the version that belongs to the browser
installed on your system. The location where you install the driver is important, as it
needed in the TESTAR configuration. Sensible locations would be :

• Windows : C:\Windows\chromedriver.exe
• OS X : /usr/local/bin/chromedriver
• Linux : /usr/lib/chromium-browser/chromedriver

�¥ hands-on 28

Install the Selenium Webdriver for Chrome on your system

Get the Chrome/Chromium from here https://chromedriver.chromium.org/

downloads (see Figure 19). Remember to check the current version of your browser
(chrome://settings/help).

8.2 Settings for TESTAR to test web applications

In TESTAR Settings Dialog, when the selected protocol is:

02 webdriver parabank

The SUT connector is:

WEB DRIVER

And in the SUT connector value, you can see the start-up path is written as:

"C:\Windows\chromedriver.exe" "https://para.testar.org/"

This means:

• Selenium webdriver path: indicates the PATH towards the location of the Selenium
Webdriver. If this differs from the path you used in handson 28, change this here.

• URL of the web application you want to test.

The ChromeDriver is started up with the URL of the website as one of its arguments.

52

�¥ hands-on 29

Start up the web application in SPY mode

Make sure the path to ChromeDriver is correct, and its version has to match the
version of the Chrome web browser. Use TESTAR SPY mode to check if TESTAR
starts WebDriver correctly and finds actions on the web application. Check also
whether the action filtering is sufficient.

�¥ hands-on 30

Run some tests for the web application.

Run TESTAR GENERATE-mode to see how it works. You will see that without
providing the username and password, you will not get far with the login process.
You might find a failure with Suspicious Tags oracle if TESTAR tries to login
with invalid input, but if you look into it, it is probably a false positive (test fails
but SUT does not have a bug). In this case, you might want to remove “Error”
from the suspicious tags oracle.

8.3 Adding knowledge about the SUT - specific input actions

TESTAR protocols allow triggering pre-specified actions in a specific state of the SUT. This
is useful for inputting login credentials or navigating to a specific part of the application
before starting the testing.

53

To make this implementation easier for the users, there are two pre-defined methods
for executing actions, which execute actions such as click or type on a widget with a
specific Tag value. These methods can be found in GenericUtilsProtocol.java5. We
will explain them below.

// Click pre-defined action

waitAndLeftClickWidgetWithMatchingTag(Tags.Title, // Tag Name

"Next", // Tag Value to find

state, // State to search

system, // System to interact

5, // maxNumberOfRetries

1.0); // waitBetweenRetries

The waitAndLeftClickWidgetWithMatchingTag method will try to find a widget in state
state that has a tag Tags.Title with the exact value Next and then click on that. The
variable system is passed to the method to be able to execute the click action.

When interacting with an application, sometimes TESTAR executes actions so quickly
that the GUI doesn’t have time to load all widgets completely. For this reason, this
waitAndLeftClickWidgetWithMatchingTagmethod internally tries to match the Tag and
Value to perform the action a maxNumberOfRetries and waitBetween these tries some
seconds. In this case, we indicate we want to try this click action 5 times and wait 1

second between each try. This helps to create a more robust GUI-triggered action.

// Click and type pre-defined action

waitLeftClickAndTypeIntoWidgetWithMatchingTag(Tags.Title, // Tag Name

"username", // Tag Value to find

"testar", // Text to type

state, // State to search

system, // System to interact

5, // maxNumberOfRetries

1.0); // waitBetweenRetries

The waitLeftClickAndTypeIntoWidgetWithMatchingTag method will try to find a wid-
get in state state that has a tag Tags.Title with the exact value username and then
Type the text testar.

Typing in text fields requires TESTAR to interpret each char of a string as a Keyboard Key
(KBKey) and translate these KBKeys chars into code events. However, special characters
are sometimes challenging to type due to the Keyboard language differences. For this
reason, we have implemented a Paste in text fields action that copies the desired string
into the system clipboard and then pastes it into the text field widget.

Using the waitLeftClickAndPasteIntoWidgetWithMatchingTag method, TESTAR will
try to find a widget in state state that has a tag Tags.Title with the exact value
username and then Paste the text testar.

5https://github.com/TESTARtool/TESTAR_dev/blob/master/testar/src/org/testar/protocols/

GenericUtilsProtocol.java

54

8.4 Adding knowledge about the SUT - login to parabank

In the case of Parabank, the login fields are visible directly when the Parabank application
is started, i.e., the initial state. In this case, we can use the TESTAR’s protocol method
beginSequence() that is executed before TESTAR starts generating the test sequence.
Note that beginSequence() is not executed when using SPY mode.

Let us use the methods explained in the previous section to define login actions for Para-
bank. A valid login is:

username: john
password: demo

Since Parabank is a web application, you can spy it with Chrome web browser’s Inspect
facility. Right-click on the Username text field, and select Inspect to see the widget pa-
rameters and find the information about the tags you need.

We use these parameters to define TESTAR configuration to do the login actions. Re-
member that for desktop applications, we have used TESTAR SPY-mode to check these
tags and parameters.

The web attribute name is mapped as WdTags.WebName. You can find more information
about these TESTAR WebDriver Tags in the class WdTags.java6.

�¥ hands-on 31

Edit the protocol to enable the login

Check that you have 02 webdriver parabank protocol selected and press Edit
Protocol button in TESTAR Settings Dialog. That should open TESTAR protocol
editor and you should see Java code in it.

(You can also edit the protocol by using a Java IDE or text editor, the file can be
found in the folder:

6https://github.com/TESTARtool/TESTAR_dev/blob/master/webdriver/src/org/testar/monkey/

alayer/webdriver/enums/WdTags.java

55

testar/bin/settings/02_webdriver_parabank

Find the beginSequence method from the code. Copy and paste the following
snippet of code into the body of the method (un-comment the code if it is already
there by removing /* and */):

// write "john" to username text field:

waitLeftClickAndTypeIntoWidgetWithMatchingTag(WdTags.WebName,

"username",

"john",

state,

system,

5,

1.0);

// write "demo" to password text field:

waitLeftClickAndTypeIntoWidgetWithMatchingTag(WdTags.WebName,

"password",

"demo",

state,

system,

5,

1.0);

// click login-button:

waitAndLeftClickWidgetWithMatchingTag(WdTags.WebValue,

"Log␣In",

state,

system,

5,

1.0);

Click Save and Compile in the Protocol Editor, or check that Always compile
protocol checkbox is enabled in TESTAR “General Settings”-tab.

Run TESTAR in Generate mode and check whether the added code manages to
login into Parabank application.

56

8.5 System specific input actions - deriveActions()

Sometimes, the state that requires a specific input is not visible right away when the
system starts. Then we need to define a unique way of detecting the state of SUT that
needs the input and then trigger pre-specified actions that fill in the data. After that,
TESTAR continues the automated testing.

For the previous Parabank login example, we always executed a trigger action login when
the web started. However, these Update Profile or Bill Payment Service are states
that may occasionally appear in the testing process.

In deriveActions(), the idea is to check if the form itself or the first element of the form
exists, then create a compound action that triggers the execution of multiple click and
type actions until all form widgets are interacted.

We can implement this compound action in two ways:

57

1. Create a compound action in deriveActions() and add it to the possible actions to
execute. Then TESTAR will have the possibility to execute it, but it won’t always
happen.

2. Only return the compound action in deriveActions(). Then TESTAR will always
execute it because it will be the only action available.

�¥ hands-on 32

Use ParaBank web application as an example to create a trigger for form filling.

1 Let’s first use the inspect facility of the web browser on the web site we want
to add the trigger.

• Open a web browser and go to https://para.testar.org/

• Login with username=john and password=demo
• Click on Update Contact Info
• Right-click on First Name text field and select Inspect
• You should get the following info:

<input id="customer.firstName"

name="customer.firstName"

class="input␣ng-pristine␣ng-valid␣ng-not -empty␣ng-touched"

type="text"

ng -model="customer.firstName">

• Let’s try using id="customer.firstName" as the trigger to recognize the
state.

2 Start TESTAR and check that you have the 02 webdriver parabank protocol
selected and press “Edit Protocol”-button in TESTAR Settings Dialog. That
should open the TESTAR protocol editor, and you should see Java code in it.
You can also edit the protocol by using a Java IDE or text editor. The file can be
found in this folder:

testar/bin/settings/02_webdriver_parabank

3 Find the deriveActions method from the code. Copy and paste the following
snippet of code into the body of the method (un-comment the code if it is already
there by removing /* and */):

// Check if the update profile element is found:

Widget nameWidget = getWidgetWithMatchingTag(

"id", "customer.firstName", state);

if(nameWidget != null){

// Update profile found, create and return the triggered action:

// Create a compound action to include multiple actions as one:

CompoundAction.Builder multiAction = new CompoundAction.Builder();

// Action to type text into the Name field:

multiAction.add(ac.clickTypeInto(

nameWidget, "Triggered␣Name", true), 1.0);

// Action to type text into id="customer.lastName":

58

Widget lastNameWidget = getWidgetWithMatchingTag(

"id", "customer.lastName", state);

multiAction.add(ac.clickTypeInto(

lastNameWidget, "Triggered␣Last␣Name", true), 1.0);

// Action to type text into id="customer.address.street":

Widget streetWidget = getWidgetWithMatchingTag(

"id", "customer.address.street", state);

multiAction.add(ac.clickTypeInto(

streetWidget, "Triggered␣Street", true), 1.0);

// Action to type text into id="customer.address.city":

Widget cityWidget = getWidgetWithMatchingTag(

"id", "customer.address.city", state);

multiAction.add(ac.clickTypeInto(

cityWidget, "Triggered␣City", true), 1.0);

// You can add here more form widgets

// Action on Update Profile button, value="Update Profile"

Widget submitWidget = getWidgetWithMatchingTag(

"value", "Update␣Profile", state);

multiAction.add(ac.leftClickAt(submitWidget), 1.0);

// Build the update profile compound action

Action updateProfileAction = multiAction.build();

// Returning a list of actions having only the updateProfileAction

return new HashSet<>(Collections.singletonList(updateProfileAction));

}

4 Run TESTAR in Generate-mode until you see that TESTAR clicks on Update

Profile and your triggered action is executed.

8.6 Webdriver oracles to detect suspicious browser console messages

As we have learned with Desktop applications, TESTAR is able to detect Suspicious Tags
by matching regular expressions in the GUI widgets properties. This can allow users to
find some Parabank states with Error messages when running TESTAR.

Similar to Desktop applications, on which TESTAR offers the possibility to read the pro-
cess output buffers to match regular expressions, for Web applications, TESTAR contains

59

a feature to read the console of the browser to detect erroneous and warning messages.
Obtaining this information can help detect issues on the web page that are not easy to
detect from the GUI or enrich the information of the GUI errors with additional console
error information.

From the Oracle-Tab in the TESTAR dialog, users can enable or disable this feature that
allows detecting ALL error or warning web console messages by default. In case users
desire to apply some regular expressions to detect only specific messages instead of all
of them, they can edit the test.settings file to add matching patterns to the error and
warning consoles individually.

60

�¥ hands-on 33

Run some Parabank tests to detect all error console messages

Run TESTAR and select the protocol 02_webdriver_parabank. Change to the
Oracle tab in the dialog and enable the Web Console Error Oracle checkbox.

Start testing sequences with the Generate mode of TESTAR and open the HTML
reports checking if some console error messages have been detected.

�¥ hands-on 34

Run some Parabank tests to detect specific warning console messages

Open the test.settings file that exists in the parabank protocol folder:

testar/bin/settings/02_webdriver_parabank/test.settings

First, find the WebConsoleErrorOracle setting and disable it. Then, find the
WebConsoleWarningOracle setting and enable the feature with the true option.
Finally, edit the next WebConsoleWarningPattern setting to add a regular ex-
pression that matches the Wrong values.

WebConsoleErrorOracle = false

WebConsoleErrorOracle = .*.*

WebConsoleWarningOracle = true

WebConsoleWarningOracle = .*[wW]rong.*

Start testing sequences with the Generate mode of TESTAR and open the HTML
reports checking if some console warning messages with the “wrong” value have
been detected.

8.7 Webdriver DomainsAllowed

One of the features of using TESTAR with the webdriver, is the list of domains allowed
represented as a DomainsAllowed setting. This feature is implemented to keep our tests in
the same web domain since many web applications have links pointing to external domains.

Its purpose can be seen in the footer of the Parabank webpage. Home, About Us, Services,
Site Map, and Contact Us widgets are hyperlinks to pages within the para.testar.org
tested domain. These are all regarded as clickable by TESTAR and thus decorated with

61

the familiar green dot. Nonetheless, widgets such as Products, Locations, Forum, and
Visit us are hyperlinks to the external domain parasoft.com.

Because parasoft.com is not included in the DomainsAllowed setting, we can observe
a grey dot over the widget that indicates these widgets are potentially clickable but are
filtered, in this case, due to web domain reasons. Adding the domain to the class setting
DomainsAllowed allows these links to be visited.

para.testar.org

parasoft.com

para.testar.org

parafost.com

�¥ hands-on 35

Add the parasoft.com domain to the DomainsAllowed setting.

Open the test.settings file that exists in the parabank protocol folder:

testar/bin/settings/02_webdriver_parabank/test.settings

Find the DomainsAllowed setting, and add the parasoft.com domain separated
by the semicolon ; character

DomainsAllowed = para.testar.org;parasoft.com

Run the SPY mode and check that the widgets that contain hyperlinks to the
parasoft.com domain are decorated with a green dot.

62

If we configure this DomainsAllowed setting as null, we are going to indicate to TESTAR
that all web domains are allowed by default.

�¥ hands-on 36

Allow all web domains by declaring DomainsAllowed setting as null.

Open the test.settings file that exists in the parabank protocol folder:

testar/bin/settings/02_webdriver_parabank/test.settings

Find the DomainsAllowed setting, and add configure the variable as null

DomainsAllowed = null

Run the SPY mode and check all widgets that contain hyperlinks are decorated
with a green dot.

Finally, TESTAR considers the domain of the URL to test must be added as an allowed
domain by default. This means we do not need to specifically declare para.testar.org

as a DomainsAllowed setting when testing the URL https://para.testar.org/.

�¥ hands-on 37

Default allowed web domains.

Open the test.settings file that exists in the parabank protocol folder:

testar/bin/settings/02_webdriver_parabank/test.settings

Find the DomainsAllowed setting and remove all values

DomainsAllowed =

Run the SPY mode and check that TESTAR automatically considers the widgets
that contain hyperlinks to para.testar.org clickables with a green dot. But not
the other widgets with hyperlinks that point out of the default web domain.

8.8 Webdriver DeniedExtensions

Some web pages may contain hyperlink widgets that point to images (png, jpg, etc.),
documents, PDFs, or other files, that provoke downloading resources in the computer
or that open new pages that do not have any interactive elements. Downloading these
files or opening these non-interactive pages can cause TESTAR to get stuck and consume
resources. For example, in Parabank -> About Us web page, we can find a clickable
widget that downloads a pfx file in the system.

63

TESTAR implements a feature to deny executing actions on these undesired extensions.
This feature can be customized using the DeniedExtensions setting.

�¥ hands-on 38

Remove pfx from the DeniedExtensions setting

Open the test.settings file that exists in the parabank protocol folder:

testar/bin/settings/02_webdriver_parabank/test.settings

Find the DeniedExtensions setting

DeniedExtensions = pdf;jpg;png;pfx;xml

and remove the pfx value

DeniedExtensions = pdf;jpg;png;xml

Run the SPY mode and change to About Us page to check that TESTAR considers
actionable the soatest.pfx element when the DeniedExtensions setting is not
configured to deny it. Finally, restore the pfx value again.

64

8.9 Policy and cookies panels

In the Parabank web application, we did not find this typical behavior. However, when you
open a web application to interact, you will notice a familiar obstacle that may interfere
with the testing process of TESTAR. Policy and cookies panels can be implemented to
block the interaction with web elements until the user accepts or rejects the web policies.
Therefore, TESTAR implements an additional feature that allows users to detect and
handle them.

65

These policy elements are not always implemented with the same web attributes or using
the same web elements identifiers. For this reason, TESTAR implements a feature that
requires user customization in order to indicate which web attribute with which value
represents the policy elements. This feature can be found in the initialize() method
as a policyAttributes variable.

�¥ hands-on 39

Empty policy attributes feature

Open the General panel in the TESTAR dialog and change to the webdriver_gwt
protocol. We are going to change the web application to test to

https://www.smartclient.com/smartgwt/showcase/

Edit the protocol, find the initialize() method, and comment out the line that
maps the policy attribute with the agree button.

66

Run the SPY mode with TESTAR and notice all the clickable widgets (green dots)
that are available when starting the web application.

�¥ hands-on 40

Custom policy attributes feature

In the same webdriver_gwt protocol. Edit the protocol, find the initialize()

method, and enable again the line of code that maps the policy attribute with the
agree button.

Run the SPY mode and notice that TESTAR only focuses on the I Agree widget
button (green dot).

8.10 Webdriver clickable elements

TESTAR considers, by default, that the clickable widgets of web applications are those
that correspond to native web elements (hyperlinks, buttons, input submit, input radio,
etc.). However, some web pages can contain non-native elements which are nevertheless
clickable. The ClickableClasses setting allows users to indicate to TESTAR which non-
native widgets must be considered clickable. In order to do that, we need to know the
class web attribute 7 of the desired web element.

�¥ hands-on 41

Inspect the non-native clickable widgets

Open the https://www.smartclient.com/smartgwt/showcase/ web page in a
Chrome browser. With a Chrome browser, hover the mouse over a checkbox and
use the mouse to right-click a checkbox and select Inspect.

7https://www.w3schools.com/tags/att class.asp

67

The checkbox widgets are multiple < span > web elementsa, mainly used to mark
up a part of a text or a part of a document.

TESTAR can not consider all < span > elements clickable by default because that
will provoke deriving action in a lot of non-interactive widgets. But we can find the
CSS classes of these < span > elements to mark them in the ClickableClasses

setting.

ahttps://www.w3schools.com/tags/tag span.asp

�¥ hands-on 42

Custom the DomainsAllowed setting in TESTAR

1 Run TESTAR and select the webdriver_gwt protocol. Launch the SPY mode,
manually agree with the policy button, and verify TESTAR derives clickable ac-
tions (green dots) in all the checkboxes.

68

2 Stop TESTAR or close the web application. Open the test.settings file that
exists in the parabank protocol folder:

testar/bin/settings/02_webdriver_parabank/test.settings

Find the DomainsAllowed setting

ClickableClasses = selectItemLiteText;etreeCell;etreeCellSelected;
etreeCellSelectedOver;checkboxFalse;checkboxFalseOver;checkboxTrue;
checkboxTrueOver;showcaseTileIcon;vScrollStart;vScrollEnd

and remove all the checkboxFalse and checkboxTrue classes values.

ClickableClasses = selectItemLiteText;etreeCell;etreeCellSelected;
etreeCellSelectedOver;showcaseTileIcon;vScrollStart;vScrollEnd

3 Run TESTAR with the webdriver_gwt protocol again. Launch the SPY mode,
manually agree with the policy button, and verify TESTAR does not derive click-
able actions (green dots) in the checkboxes.

4 Stop TESTAR or close the web application. Open the test.settings file that
exists in the parabank protocol folder:

testar/bin/settings/02_webdriver_parabank/test.settings

Find the DomainsAllowed setting and add the thumbnail class value

ClickableClasses = selectItemLiteText;etreeCell;etreeCellSelected;
etreeCellSelectedOver;showcaseTileIcon;vScrollStart;vScrollEnd;thumbnail

4 Run TESTAR with the webdriver_gwt protocol again. Launch the SPY mode
and manually agree with the policy button. You will notice the new thumbnail
clickable widgets (green dots).

69

SECTION 9

Advanced TESTAR Oracles

We have seen the TESTAR capabilities and required configurations to detect if the SUT:

1. closes unexpectedly by a crash
2. stops responding due to a freeze
3. GUI widgets of Desktop and Web apps, the output buffer of Desktop apps, or the

browser console of Web apps contains suspicious Tags messages.

TESTAR protocols can be extended programmatically to go further in the detection of
test oracles. Sometimes, even if the SUT remains robust without throwing errors, we
can detect other types of malfunctions in the applications. For example, SUT tables
with empty or duplicated rows or columns, selection elements without items or duplicated
values, or text inputs on which it is not possible to type due to internal code bugs.

�¥ hands-on 43

Manually connect to Parabank to check for logical programming malfunctions

Open the URL https://para.testar.org/ in your browser and log in with user-
name=john and password=demo credentials.

Check at least the next web pages for malfunctions:

Accounts Overview

70

Request Loan

These bugs can be detected by extending the getVerdict() method and programming
customized methods that iterate through the state of TESTAR by checking specific widgets
and their properties, or executing queries using the WebDriver execute script feature
WdDriver.executeScript(query)

This first example represents a malfunction that only requires checking one property of all
the widgets of the web state in order to detect that the maxlength property of a textArea
widget was wrongly programmed with a 0 value.

The second example represents a malfunction that creates tables with duplicated rows.
This can be more complicated to customize in terms of protocol programming. In the
states we detect the existence of a web table element, we can extract the values of all
existing rows to apply a function that searches for duplicates.

71

Finally, the next example that represents a malfunction with only one empty item in a
select dropdown web element can be detected using the WebDriver execute script feature.
For each select widget of the state, we can extract the web identifier using the TESTAR
WebId property, then execute a query that checks the length value of the select widget.

�¥ hands-on 44

Run TESTAR to detect Parabank malfunctions

1 Run TESTAR and select the 02_webdriver_parabank protocol. Then, click
the Edit Protocol button to open the Java protocol.

2 Find the getVerdict() method and uncomment the custom verdicts that
invoke the examples of advanced oracles methods. Then, Save and Compile the
protocol.

72

3 Run the Generate mode of TESTAR. After some sequences, check in the
HTMLreports if TESTAR was able to detect some WARNING sequences

73

SECTION 10

TESTAR State Model

As TESTAR explores and tests the SUT, it can generate a State Model that traces which
states were discovered while executing GUI actions. This State Model is stored in the
OrientDB graph database. After executing test sequences and generating the State Model,
users can query the database using OrientDB studio or analyze the model using TESTAR
Analysis mode.

Left Click at
“Edit”

Left Click at
“Replace…”

Left Click at
“Cancel”

10.1 Install OrientDB

Warning: Current OrientDB version is 3.2.X. However TESTAR currently requires the
use of versions 3.0.X

You can find the OrientDB Community Edition versions to download from:
https://repo1.maven.org/maven2/com/orientechnologies/orientdb-community/

You will need to create a database with user and password credentials. Next Option 1

subsection indicates a URL to download an already customized database. And Option

2 subsection provides manual instructions to do this configuration.

10.1.1 Option 1: Use a configured TESTAR OrientDB

The TESTAR team already provides a distribution of configured OrientDB software. This
distribution contains a database with the following testar configuration:

74

• database name: testar
• username: testar
• password: testar

https://testar.org/images/development/experiments/orientdb_testar_db.zip

10.1.2 Option 2: Manual configuration of OrientDB

1. Extract all OrientDB files in the desired directory.
2. Execute:

orientdb-3.0.X\bin\server.bat for Windows hosts
orientdb-3.0.X\bin\server.sh for Unix hosts

3. OrientDB server will start running on the system. In the first OrientDB execution,
you need to create superuser credentials in the opened command prompt.

4. Use your browser to access to http://localhost:2480/

5. Use the NEW DB button and superuser credentials to create a new database.

6. Click on Security tab and ADD USER button to create a new user with access
to the database. For basic experimentation we recommend to use name:testar

password:testar Use Status:Active and Roles:admin for permissions.

75

After these configuration steps, you can move to the running OrientDB command prompt
and press Control + C to stop the execution.

10.2 Configure TESTAR State Model settings

We need to configure multiple settings in TESTAR to indicate to the tool how to connect
with the OrientDB server and which features to use. These settings can be configured
using the State Model panel in the TESTAR dialog or by editing the test.settings file.

The State model enabled checkbox, which corresponds to the StateModelEnabled set-
ting, indicates whether TESTAR is connected to OrientDB or not.

76

77

10.2.1 OrientDB connection mode

We have two ways to connect TESTAR with OrientDB database: remote and plocal

remote mode uses a network connection that allows us to connect to an IP address. If we
have run the OrientDB server (server.bat), what we have done has been to run the server
on our local machine, so we can use the localhost address to connect to the server that
runs on our own machine.

plocal mode connects to the database at the file level, reading and writing directly to the
disk. To enable this mode, we need to indicate in DataStoreDirectory setting the path
to the directory of the orientdb-3.0.X\databases.

78

For both modes, we will need to indicate the previously configured OrientDB settings:

• DataStoreDB that corresponds with the name of the database.
• DataStoreUser that corresponds with the username.
• DataStorePassword that corresponds with the password.

10.2.2 Other State Model settings

DataStoreMode parameter must remain with the OrientDB value

DataStoreMode parameter is used to indicate how TESTAR should store the graphic
objects (vertices and edges) in the database:

1. Instant : All data will be stored after each action. This is the default and recom-
mended mode.

2. Delayed : The data will remain in memory and stored at the end of the sequence.
3. Hybrid : Abstract data will be stored in Instant mode, and concrete data in Delayed

mode.
4. None : No new data will be stored, only to read the State Model.

Store Widgets : is a feature that allows us to store the entire widget tree each time we
discover a new concrete state.

Warning: For medium complexity applications, where it is common to find a lot of new
Concrete States composed of many widgets in the GUI, this mode increases (a lot) the
time that TESTAR takes to store the information in the database.

Access Bridge Enabled : feature to test Java Swing apps.

Reset Database : Delete all State Models from a database before creating the new model.
Warning: Be careful.

Unvisited Action Selection : It uses the State Model information to navigate and
prioritize to select discovered but not executed actions. The objective is trying to complete

79

the state model.

�¥ hands-on 45

Infer your first State Model with TESTAR

1 Check that no OrientDB instances are running in your system (command
prompt running server.bat).

2 Run TESTAR, select the desktop_generic protocol, and change to the State
Model panel.

3 Customize the dialog settings to connect to OrientDB using the plocal mode.
Change the database name, user, and password if necessary. Enable Store Widgets

option, disable Access Bridge Enabled and Reset Database, and select the
Unvisited actions first algorithm.

4 Run 1 sequence of 10 actions with the Generate mode of TESTAR.

80

10.3 State Model Analysis

To view and analyze the generated State Model, we have two main options, use TESTAR
to load the existing models and use a web browser, or access OrientDB Studio 8 to launch
queries over the State Model objects, also using a web browser.

OrientDB Studio allows the user to perform post-analysis of TESTAR executions and
execute queries to implement Offline Oracle Verdicts. However, in this Hands-On tutorial,
we will focus on the TESTAR Analysis mode, which allows the user to visualize the
navigational map (State-Action) that TESTAR found by exploring and testing the SUT.
Additionally, users can click and interact with existing States and Actions of different
layers to check the set of detected properties.

�¥ hands-on 46

Analyze your first TESTAR State Model

1 Run TESTAR, select the desktop_generic protocol, and change to the State
Model panel.

2 If you changed some State Model settings, prepare the plocal mode, database
name, user, and password settings again. Then, click the Analysis button, which
opens the default system browser.

3 Click on the Graph generator web element, select the Concrete layer and
the Compound graph options, and generate the visualization of the TESTAR State
Model graph.

8http://orientdb.com/docs/3.0.x/studio/

81

As you can see in the TESTAR Analysis web, there are additional options, such as clicking
on the Sequence visualizer web element to see similar step-by-step information like
the HTML report. When generating the State Model graph, you can also build the
Abstract layer and Sequence layer. Nonetheless, these other two layers are most
important for the Unvisited algorithm that for visualization purposes.

10.4 State Model Abstraction

To check if we have found a new State in the SUT, TESTAR uses the set of properties of
all the widgets in the GUI. This set of properties is checked after the execution of each
action and generates two types of States:

1. Concrete State : ALL properties of ALL widgets are used. If any property ap-
pears, disappears, or changes, we have a new Concrete State.

2. Abstract State : SPECIFIC properties of ALL widgets are used. If one of these
specific properties appears, disappears, or changes, we have a new Abstract State.

It’s important to understand and configure this level of abstraction correctly to create a
TESTAR State Model that accurately represents how States and Actions flow within an
application.

On the one hand, working with very concrete states is not a good idea because any property
change would constantly generate new States in the model. And on the other hand, too
much abstraction can generate an incorrect State Model, where two different States are
considered the same.

Given the following Figure 21, let’s consider only the Widget Control Type (Role of the
widget) to define the Abstract State. Format “Menu” is composed of two “Menu Items”

82

and View “Menu” is also composed of two “Menu Items”. If we only consider the Widget
Control Type (Role of the widget), these totally different States will be considered the
same Abstract State. This provokes undesired behavior in the State Model algorithms
because TESTAR is not able to calculate how to navigate to execute the unvisited actions
properly.

Figure 21: State Model Widget Control Type Abstraction

To solve this, in addition to using the widget control type, we can also use the widget title
or the path in the widget tree as an abstract property.

Figure 22: State Model Widget Control Type and Title Abstraction

83

10.4.1 State Model Advanced setting

The properties to customize the Abstraction layer of TESTAR can be modified through the
test.settings file or using the Advanced button in the State Model panel of the TESTAR
dialog.

In the State Model panel, use Control + Left Click to select or unselect the desired
properties.

In the test.settings file, separate the desired properties by using commas.

�¥ hands-on 47

Spy Notepad with different Abstraction properties

1 Launch TESTAR, select the desktop_generic protocol, change to the State
Model panel, open the AdvancedAbstraction panel, and only select the Widget Control Type.

2 Run the SPY mode with TESTAR, and Spy the Format and View menus to
check the widgets and the state have the same abstract identifier.

84

3 Stop the SPY mode, and this time select both Widget Control Type and
Widget Title properties.

4 Run the SPY mode with TESTAR, and Spy the Format and View menus to
check the widgets and the state now have different abstract identifiers.

85

SECTION 11

Android systems

Appium9 is an open-source test automation framework that allows extracting the informa-
tion of mobile system elements and sending commands to interact with them. TESTAR
integrates the java-client plugin of Appium in order to implement the AndroidDriver to
test Android mobile systems and the IOSDriver to test iOS mobile systems. The next
Figure shows how Appium works as a middleware between TESTAR and a mobile emu-
lator/device to extract the widget’s information and send actions.

Java

Get Widgets

Send Action

11.1 Preparing a mobile environment

Unlike Desktop and Web applications, for mobile applications, it is necessary to prepare a
mobile environment that allows us to run the desired system under test. Users can connect
a real mobile device to a computer or prepare different Android or iOS virtual emulators.
In this guide, we recommend starting with the official Android Studio IDE10. Later, we
will also describe the possibility of dockerizing the emulator and its software dependencies.

Android Studio contains the Android Virtual Device (AVD) feature, which allows spec-
ifying the Android version and hardware characteristics to launch a simulated device11.
Once you have configured an AVD, you will be able to run a simulated mobile on your
host computer. For the future TESTAR steps, you need to take note of the “AVD name”
provided to the virtual mobile.

9https://appium.io/docs/en/2.0/
10https://developer.android.com/studio/run/emulator
11https://developer.android.com/studio/run/managing-avds

86

11.2 Installing Appium

Appium Desktop12 was an old application that allowed to install a GUI desktop version
of Appium to work as a server to connect with the emulator and execute Android test
sequences. However, it is a deprecated project that has remained archived without main-
tenance since 2023. This section will indicate which software and instructions can help
you install Appium on your computer using the npm package manager. You can find more
documentation, details, and troubleshooting on the official Appium webpage 13

1. Install NodeJS and NPM: NodeJS is a run-time environment software that allows
to execution of programs written in JavaScript. And Node Package Manager (NPM)
is an application and repository for developing and sharing JavaScript projects and
their code (like Appium). Since NPM is included by default in NodeJS, what you
need is to download and install NodeJS in your system 14

2. Install Appium with npm: Once NPM is installed in your system, you can install
the Appium project by opening a command prompt and typing:
npm i -g appium@next

After the installation, verify you are using some Appium version 2.0.0 by typing:
appium --version

3. Install Appium uiautomator2 driver: Appium is already installed with NPM,
but you also need to install in Appium a mobile driver which allows you to connect
and interact with mobile environments. You can type the command:
appium driver install uiautomator2

Finally, to verify the driver installation, you can type:
appium driver list --installed

Once everything is installed correctly, we will be able to launch the Appium server in a
command prompt by executing:
appium --relaxed-security --base-path /wd/hub

For security reasons, Appium client sessions can not request feature enablement via ca-

12https://github.com/appium/appium-desktop
13https://appium.io/docs/en/2.0/
14https://nodejs.org/en/download

87

pabilities 15. However, for local testing purposes, we are using the --relaxed-security

parameter to disable this security temporally. Furthermore, we use the --base-path

/wd/hub to enable the path direction on which TESTAR requests the connection with
Appium.

11.3 Testing a local Android Application Package

The Android Application Package (APK) files are software packages with dependencies
that allow the execution of Android applications in mobile environments. These are similar
to the .jar files we used to run Desktop Java applications such as the Calculator. If we
have the desired APK to be tested locally on our host computer, we can configure TESTAR
to install and launch the application through Appium in the virtual emulator.

The file DesiredCapabilities.json is an additional configuration file for Android pro-
tocols we need to use to indicate to TESTAR:

• to which deviceName we want to connect (AVD name created).
• the platformName that corresponds with the mobile platform (Android).
• the app to test (local APK).
• the automationName that corresponds with the Appium mobile driver (UiAutoma-
tor2).

• the appWaitActivity to use a starting state to initialize the testing process.

15https://appium.io/docs/en/2.0/guides/security/

88

You will find this file together with the Java protocol and test.settings file in the specific
protocol directory:

testar/bin/settings/android_generic

-- testar/bin/settings/android_generic/Protocol_android_generic.java

-- testar/bin/settings/android_generic/test.settings

-- testar/bin/settings/android_generic/DesiredCapabilities.json

Since, for the Android system, the application runs in an external mobile device or a virtual
environment, the SPY mode of TESTAR cannot easily draw the information about the
detected widgets and derived actions on the computer screen. For this reason, for Android
protocols, TESTAR will execute an additional Java dialog that displays an image of the
current state in a left panel and the hierarchy of the existing widgets information in a
right panel.

�¥ hands-on 48

SPY a local Android APK with TESTAR through Appium

1 Verify there is an Android emulator (AVD) running in your system

2 Verify there is an Appium server running in your system with the --relaxed-security
and --base-path /wd/hub parameters

3 Open the testar/bin/settings/android_generic/DesiredCapabilities.json
file. Because TESTAR already provides a demo ApiDemos-debug.apk for learning
purposes, you only need to take care of modifying the "deviceName" JSON value
with the AVD name created in your computer.

4 Launch TESTAR and change to the android_generic protocol, then, Run the

89

SPY mode. If you did not change any other setting, the COMMAND_LINE connector
of TESTAR is already pointing to the file we configured in the previous steps
./settings/android_generic/DesiredCapabilities.json.

5 Play with the left and right panels created by TESTAR. You can manually
interact with the application inside the AVD emulator, then TESTAR will auto-
matically update the displayed state.

To generate test sequences, we also need to have the Android device/emulator with Ap-
pium as middleware architecture. The Suspicious Tags Oracles are configurable in a
similar manner to Desktop and Web protocols. And the information generated along the
sequence is also created as an HTML report in the output folder testar/bin/output.
Compared with SPY mode, in GENERATE mode, TESTAR will not execute any addi-
tional dialog but just execute actions in the Android application.

�¥ hands-on 49

Generate test sequences of a local Android APK

1 Verify there is an Android emulator (AVD) running in your system

2 Verify there is an Appium server running in your system with the --relaxed-security
and --base-path /wd/hub parameters

3 Verify the testar/bin/settings/android_generic/DesiredCapabilities.json
file is configured

4 Launch TESTAR and change to the android_generic protocol. Because we
already configured the protocol on previous exercises, we focus on generating some
test sequences. Run 5 sequences of 10 actions with the GENERATE mode.

5 At the end of the test sequences process, open the HTML reports to check the
results.

90

11.4 Testing a remote Android Application Package

It is also possible to indicate TESTAR and Appium to download and test an APK acces-
sible through the internet or hosted inside our company environment. To do this, we only
need to configure the app values in the DesiredCapabilities.json file with the desired
URL containing the remote APK.

�¥ hands-on 50

Configure TESTAR to test a remote APK

1 Verify there is an Android emulator (AVD) running in your system

2 Verify there is an Appium server running in your system with the --relaxed-security
and --base-path /wd/hub parameters

3 Open the testar/bin/settings/android_generic/DesiredCapabilities.json
file. Now modify the existing app value that points to the local APK suts/ApiDemos-debug.apk

to the next remote URL that also contains the same ApiDemos application:

https://github.com/appium/java-client/raw/master/src/test/resources/apps/ApiDemos-debug.apk

4 Launch TESTAR and change to the android_generic protocol. Because we
configured the DesiredCapabilities.json file, we don’t need to modify any-
thing more in the COMMAND_LINE connector of TESTAR. Run the SPY mode to
verify TESTAR launches the remote APK and the new Java dialog still detects
all widgets.

91

SECTION A

Troubleshooting with Java versions

PATH 1: If JAVA_HOME is not defined in your environment variables, you will see the
following error message:

JAVA_HOME is not set and ’java’ command could be found in your PATH

PATH 2: If your JAVA_HOME path does not point correctly to the installation path for
the Java Development Kit, you will see the following error message:

JAVA HOME is not properly aiming to the Java Development Kit

PATH SOLUTION: To set your JAVA_HOME look for example on stackoverflow16 for the
instructions for your type of machine.

VERSION 1: If TESTAR was compiled with a different Java version, you will see the
following error message:

Exception in thread "main" java.lang.UnsupportedClassVersionError

VERSION SOLUTION: To check which Java version has been used to compileTESTAR,
you can check, for example, this baeldung guide17.

16https://stackoverflow.com/questions/2619584/how-to-set-java-home-on-windows-7
17https://www.baeldung.com/java-find-class-version

92

SECTION B

Windows Screen Scaling Settings

In this appendix section, we are going to explain a known TESTAR issue regarding Win-
dows screen display settings and widget coordinates detection.

If with a TESTAR Spy mode run you have been able to correctly detect the widgets
with the mouse, by moving it to widgets screen coordinates, you probably won’t find this
problem in the future, but it is better to keep it in mind to know how to solve it.

We have detected that the Windows screen display settings affect TESTAR when process-
ing the SUT coordinates and their corresponding widgets. We currently know that these
two options cause the problem (see Figure 23):

• Display scale % setting
• Advanced scaling setting: Let Windows try to fix apps so they’re not blurry.

Figure 23: Windows screen scale settings

After checking this issue, we start calling the Windows system to get the current value of
the display scale to be applied to the coordinates of the widgets. However, we detected
that the coordinates behavior differs in different environments with the same display and
blurry options. That’s why we have not yet developed a general solution that solves the
issue in every Windows environment.

Our current recommendation is to use the 100% display setting value and try disabling
the blurry option in case this error persists. NOTE: If you are working with a VM, the
display settings values from the host computer are transmitted to the VM. So basically
you need to change the value in your host computer settings.

Webdriver implementation (see section 8) uses the selenium framework to obtain the SUT
information differently than the Windows Accessibility API used for desktop applications.
We have again detected different behavior for different environments, but also comparing
Windows API vs Webdriver implementations in the same environment with the same scale
settings.

93

That is why we have included a setting configuration in the webdriver protocols, that allows
overriding the default scale value in case of continuing with faulty coordinate detection.
In the figure 24, we can see the Override display scale, on which we can introduce a
decimal value as (1.0 - 100%, 0.5 - 50%, 1.5 - 150%) to override the default value taken
from Windows system.

Figure 24: TESTAR Override display scale setting

94

SECTION C

ActionDuration test.setting

ActionDuration is a non-negative decimal setting that indicates to TESTAR the speed,
in seconds, at which an UI action is performed.

When the value of this setting is 0 or 0.0, TESTAR teleports the mouse from the current
screen location to the widget coordinates. If this action teleport fails, it can be because
the Screen scale value is not 100% (see APPENDIX B).

In case the value of this setting is higher than 0.1, TESTAR performs a mouse movement.
However, moving the mouse over a GUI may provoke changes in the GUI widgets and alter
the running sequence:

https://github.com/TESTARtool/TESTAR_dev/issues/224

95

SECTION D

CAPS LOCK event for SPY mode filtering

Temporally workaround: Due to this problem sending the CAPS LOCK key event to a
Virtual Machine, we added an optional workaround also to be able to use the ALT key
event to enable the SPY filtering mode.

The usage of the button CAPS LOCK is a useful TESTAR feature to filter undesired action-
widgets when using the SPY mode(see Section 6.2).

As you know, we recommend running TESTAR in a Virtual Machine to prevent users to
suffer undesired actions in their host computers. Unfortunately, the usage of a Virtual
Machine may affect the usage of the CAPS LOCK event-button.

Normally, when working on a host computer, pressing CAPS LOCK creates an event in the
host system indicating that the button must remain toggled. However, in some Virtual
Machine services, this event may not be detected correctly. This means that even if you
press the CAPS LOCK button in your host, the Virtual Machine system will not toggle the
button.

96

SECTION E

What is a regular expression and what it can do?

A regular expression (regex) is a sequence of characters that defines a search pattern. It can
be used to match, search, and manipulate text. Regular expressions are commonly used
in programming, text editors, and command-line utilities to perform string manipulation
and pattern matching.

Before you start writing a regular expression, you need to identify what pattern you want
to match. This could be a specific word, a group of words, a certain character, or a
combination of different elements.

The syntax of regular expressions varies slightly depending on the tool or programming
language you are using, but the basic principles are the same. Regular expressions are
made up of special characters and metacharacters that represent different patterns.

Some common meta-characters include:

. - Matches any single character except a newline character.
* - Matches zero or more occurrences of the previous character or group.
+ - Matches one or more occurrences of the previous character or group.
? - Matches zero or one occurrence of the previous character or group.
— - Alternation operator, matching either the left or right expression.
() - Used to group expressions together.

DESCRIBE rules that we apply in the checkers https://docs.oracle.com/javase/7/

docs/api/java/util/regex/Pattern.html

More information can be found at the following link:

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html

https://zeroturnaround.com/rebellabs/java-regular-expressions-cheat-sheet/

E.1 Regex mastery

Regex is a flexible and powerful mechanism that we use in TESTAR to filter undesired
action-widgets or to customize Suspicious Tags Oracles. With experience, you can little
by little improve your mastery using Regex with TESTAR.

Sometimes, for example, you need to prepare a TESTAR protocol to derive action-widgets
in specific buttons of your application. In those cases, maybe you want to apply ”inverse”
filtering ^(?!(.*tan.*)$).*$ that filters everything except your desired buttons.

For Suspicious Tags, displaying decimal values with more than 2 decimal digits can be
considered an error. Regex expression as \d+\.\d{3,} can help you to detect these cases.

97

SECTION F

Keyboard actions and the CompoundAction builder

We can also define specific input actions by specifying a sequence of Keyboard Actions to
navigate and input data in the required fields.

To enable keyboard navigation we will use a CompoundAction builder, that contains a
series of actions that you want to execute when the system starts up. Note that, in the
following example, when the username is being typed, it is assumed that keyboard focus
is on the user field, but this may not be the case when you start up. So you might first
need to TAB your way to the right widget.

new CompoundAction.Builder()

// assume keyboard focus is on the user field

.add(new Type("john"),0.1)

// assume next focusable field is pass

.add(new KeyDown(KBKeys.VK_TAB),0.5)

.add(new Type("demo"),0.1)

// assume login is performed by ENTER

.add(new KeyDown(KBKeys.VK_ENTER),0.5).build()

.run(sut,null,0.1);

return sut;

Sometimes we want to enter special characters into a text field, the writing of special
characters into text fields depends on the user Keyboard language. The following is an
example of how to write the @ character from an ENG Keyboard.

import org.testar.alayer.devices.AWTKeyboard;

Keyboard kb = AWTKeyboard.build();

//Based on ENG Keyboard, Shift + 2 typing @ character

kb.press(KBKeys.VK_SHIFT);

kb.press(KBKeys.VK_2);

kb.release(KBKeys.VK_2);

kb.release(KBKeys.VK_SHIFT);

98

SECTION G

Failure BINGO!

After doing the hand-on in Section 6 you know how to use the tool, your task is to setup
a longer test for the Calculator, e.g. 30 sequences with a length of 50 actions (feel free
to use different values). Run the tool and observe its output! Does it find and report
the failures? Can you replay the sequences that found failures and can you reproduce the
failures? If the tool executes undesirable actions, improve your setup and restart the test.
At the end of this task you should have a folder with several erroneous sequences that can
be replayed and expose failures.

Find as many failures as possible and fill the following Bingo card.

Yell BINGO!! if you are the first to fill the card. The BINGO is valid if the “How to
reproduce fields” can really reproduce the bug. Note that this can be done manually or
with TESTAR replay.

99

SECTION H

Keyboard shortcuts

Several keyboard shortcuts are available for the different TESTAR working modes.

Keyboard shortcut Effect Working modes
SPY GENERATE REPLAY

Shift + Arrow Up Show widgets info ✓
Shift + Arrow Down Close the mode and go back ✓ ✓ ✓

to TESTAR dialog

Shift + Space Toggle slow motion test ✓ ✓
CAPS LOCK/TAB + UI widgets’ ✓

(Shift) Ctrl actions filtering

Table 1: Keyboard shortcuts

Figure 25 gives an overview of how to go from mode to mode and back to TESTAR. A
summary of the shortcuts in Appendix H. It is a good idea to become familiar with this
Mode and its shortcuts.

estT *
ar.org

SPY

GENERATE

REPLAY

SHIFT +

Down SH
IF

T
+

Do
wn

Close SUT

Shift + Up

Close viewerSHIFT +
Down

Figure 25: TESTAR Modes

100

SECTION I

Directories

./settings Tests set ups

./output Reports of the different TESTAR runs

./output/timestamp_SUTname Reports: logs, screenshots, graphs, metrics, serialized tests

./././sequences All the serialized test sequences

./././sequences V Classified test sequences by verdict V. Where V can be
from {ok, suspiciostitle, unexpectedclose}

./././HTML reports Visual html report

./././srcshots Screenshots of tests UI states and executed UI actions

./././logs Tests logging data

./output/graphs Tests graphing for visual analysis

./output/metrics Tests performance indicators

./output/temp Temporary files such as the last recorded test sequence

101

SECTION J

Test settings

• ActionDuration = a non-negative decimal. Sets the speed, in seconds, at which
an UI action is performed. For example, typing a text will introduce delays between
each key stroke.

• AlgorithmFormsFilling = true or false. Enables or disables a specific UI action
selection algorithm that will try to populate data in UI forms.

• ClickFilter = regular expression. Prevents UI actions to be performed on UI ele-
ments whose TITLE matches the regular expression. The rationale behind this is
that certain UI actions might be dangerous or undesirable without human supervi-
sion (e.g. printing documents, files operations). For example: .*[cC]lose.*|.*[eE]xit.*|.*[pP]rint.*).

• CopyFromTo = (source file path;target file path)*. A list of (>=0) pairs of source
and target files to copy before a test starts (click the text-area and a file dialog will
pop up). Sometimes, it can be useful to restore certain configuration files to their
default prior to SUT execution, so that the SUT starts from a desired state.

• Delete = (file path)*. A list of (>=0) files to delete before a test starts (click the
text-area and a file dialog will pop up). Certain SUTs may generate configuration
files, temporary files and/or files that save the SUT’s state. Thus, you can restore
your SUT environment to a desired state removing files generated from previous
executions.

• DrawWidgetInfo = true or false. Sets whether to display detailed overlay infor-
mation, inside the SPY mode over the selected widget in UI of the SUT.

• DrawWidgetTree = true or false. Sets whether to display a graphical representa-
tion of the widget-tree, inside the SPY mode for the selected widget in the SUT’s
UI.

• DrawWidgetUnderCursor = true or false. Sets whether to display brief overlay
information, inside the SPY mode over the selected widget in the UI of the SUT.

• ExplorationSampleInterval = a positive number. Sets the metrics sampling in-
terval by the number of executed UI actions during a test.

• ForceForeground = true or false. Sets whether to keep the SUT’s UI window
active in the screen (e.g. when its minimised or when a process is started and its UI
is in front, etc.).

• ForceToSequenceLength = true or false. Setting the value to true, if a test fails
(e.g. the SUT crashes), TESTAR continues the test sequence until it reaches the
specified test sequence length (check SequenceLength property). Otherwise (false
value), the test will finish in the presence of a fail.

• MaxTime = a positive number. Sets a time window, in seconds, after which the
test is finished (e.g. stop after an hour, a day or a week).

• Mode = SPY, GENERATE, VIEW or REPLAY (check ShowVisualSettingsDi-
alogOnStartup property). Runs the tool into the SPY, GENERATE, VIEW or
REPLAY mode.

• NonReactingUIThreshold = a positive number. Sets a test window (number of
UI actions) for which a non-reacting UI will force to perform UI actions that could
potentially make the UI to react (e.g. an ESC key stroke to close a popup dialog
box).

• LogLevel = 0, 1 or 2. Sets the logging level to critical messages (0), information
messages (1) or debug messages (2).

102

• OnlySaveFaultySequences = true or false. Sets whether to save non-fail test
sequences.

• ProcessesToKillDuringTest= regular expression. Any process name that matches
the regular expression and is started during a test will be automatically killed. The
rationale behind this is that some UI actions could start undesirable processes (e.g.
an email client). For example: (e.g. .*[oO]utlook.*|firefox.exe).

• ProtocolClass = settings folder/Test protocol class name. Links to the test pro-
tocol class under the folder denoted by the MyClassPath property.

• ReplayRetryTime = a positive number. Inside the replay mode, establishes the
time window in seconds for trying to replay a UI action of a replayed test sequence.

• SequenceLength = a positive number. Sets each test sequence (check Sequences
property) length as the number of UI actions to perform18. Check the StopGen-
erationOnFault, ForceToSequenceLength, MaxTime, SuspiciousTitles, TimeToFreeze
and ProtocolClass properties for specific behaviour.

• Sequences = a positive number. Number of times to repeat a test.
• ShowVisualSettingsDialogOnStartup = true or false. Sets whether to display
the tool UI. If false is used, then the tool will run in the mode of the Mode property.

• StartupTime = a positive number. Sets how many seconds to wait for the SUT
to be ready for testing (its UI being accessible by TESTAR). If the SUT did not
start on time the test will not run. Otherwise, test will start as soon as the UI is
accessible. Take into account that the first time the SUT is run on your environment
will usually take more time than next executions (e.g. due to memory catching).

• StopGenerationOnFault = true or false. Sets whether to finish a test in the
presence of a fail (e.g. a SUT crash). Setting it to false does not necessarily mean
that the test will continue, but the test will try to continue as far as the SUT accepts
additional UI actions and the test set up does not finish the test by other means
(e.g. MaxTime, SuspiciousTitles, TimeToFreeze or ProtocolClass properties).

• SUTConnector=COMMAND LINE, SUT WINDOW TITLE or SUT PROCESS NAME.
Sets the approach used to connect with your SUT:

– COMMAND LINE: SUTConnectorValue property must be a command line
that starts the SUT. It should work from a Command Prompt terminal window
(e.g. java -jar SUTs/calc.jar). For web applications follow the next format:
web browser path SUT URL.

– SUT WINDOW TITLE: SUTConnectorValue property must be the non-empty
title displayed in the SUT’s main window. The SUT must be manually started
and closed.

– SUT PROCESS NAME: SUTConnectorValue property must be the process
name of the SUT. The SUT must be manually started and closed.

• SUTConnectorValue = check SUTConnector property.
• SuspiciousTitles = a regular expression. Checks the UI for any suspicious title
that could denote problems in the SUT. TESTAR checks whether there exists a
widget’ TITLE in the UI that matches the regular expression. If a match was found
the test will continue but you will find the issues found in the reports. For example,
a critical message like “A NullPointerException Exception has been thrown” can be
represented by the regular expression “.*NullPointerException.*”.

• TimeToFreeze = a positive number. Sets the time window, in seconds, for which
to wait for a not responding SUT. After that, the test will finish with a fail. The
rationale behind this is that the SUT could hang, be performing heavy computations
or be waiting for slow operations (e.g. bad internet connection). The value of the

18Note: higher values will consume more hardware resources, specialy if graphing was activated.

103

property is thus a threshold after which the SUT is interpreted to have hung.
• TimeToWaitAfterAction = a non-negative decimal. Sets the delay, in seconds,
between UI actions during a test. It directly affects the reproducibility of tests and
tests performance. Setting it to a low value will speed up the tests, but the SUT
could not have finished processing an action before the next action is executed by
TESTAR. In the latter case the test could not be reproducible, but it could reveal
potential faults (stress testing).

• UseRecordedActionDurationAndWaitTimeDuringReplay = true or false.
Inside the replay mode sets whether to use the action duration (check ActionDuration
property) and action delay (check TimeToWaitAfterAction property) as specified in
the recorded test sequence. If set to false, the values from the current set up are
used.

• VisualizeActions = true or false. Sets whether to display overlay information,
inside the SPY mode, for all the UI actions derived from the test set up.

104

Index

GENERATE Mode, 22

action filter

regular expression, 31

CompoundAction builder, 98

Continuous Integration, 45

filter actions

regular expression, 31

general-purpose requirements, 22

GENERATE Mode, 21

Mode

GENERATE, 22

GENERATE, 21

SPY, 19

oracle, 34

implicit, 22

protocol
Protocol 01 desktop calculator.java,

29

regular expression, 32

SPY mode, 19
sse file, 29
stopping criterion, 21
SUT

Calculator, 14
connector, 17, 43
COMMAND LINE, 17, 43
SUT PROCESS NAME, 44
SUT WINDOWS TITLE, 43

test.settings file, 16, 28
TESTAR

Dialog Tabs
Filters Settings, 31
General Settings, 17, 29, 43

105

