
Automated Testing at the GUI level

Hands-on do it yourself session

T *
ar.orgest

2018

The TESTAR team

Last updated: 12/12/2018 at 13:27.

1

Contents

1 What is GUI Testing? 4

2 We start with a simple buggy SUT 4

3 The Virtual Machine 4

4 Downloading and installing TESTAR 5

5 Hands-on step by step 6

5.1 Manually test the SUT . 6

5.2 Starting up TESTAR . 7

5.3 The SPY Mode . 8

5.4 The GENERATE mode . 10

5.5 RECORD mode . 11

5.6 Design a Test Oracle . 12

5.7 Adjust TESTAR’s Behavior 13

5.8 The test.settings file . 14

5.9 Process Listener . 14

5.10 Failure BINGO! . 17

5.11 Connecting with a SUT: the SUT connectors 17

5.12 Play with the Tool and some other applications 18

5.13 Testing web applications . 19

5.14 Editing the protocol . 19

5.14.1 Editing the protocol to logon 19

5.14.2 Editing the protocol to add an oracle 20

2

5.15 Testing Java Swing applications 21

5.16 Some ways to Analyse TESTAR output 23

5.16.1 Viewing executed test sequences 24

5.16.2 Using the graph database 24

A Keyboard shortcuts 27

B Directories 28

C Test settings 29

D Calculator Failures BINGO! 33

3

1 What is GUI Testing?

GUI Testing is a testing technique where one tests the System Under Test
(SUT) solely through its Graphical User Interface (GUI). The only way to
find errors is to thoroughly observe the status of the GUI throughout the
test. This type of testing is usually carried out manually, where a tester
just follows a previously written ”test case” and verifies whether the appli-
cation responds to all inputs as expected. On the one hand GUI testing is
a relatively straightforward process, since one does not need to read or test
the source code of the SUT. On the other hand it is quite laborious, time
consuming and, well... boring...

Therefore, in this assignment we will try to automate GUI testing by
using a tool called TESTAR 1. TESTAR is an open source tool for automated
testing through GUI. It automatically interacts with the SUT by clicking
and typing on the controls of the GUI. It is able to recognize abnormal SUT
behaviour, such as crashing or freezing, and you can add application specific
test oracles. TESTAR reports test sequences that lead to failure.

2 We start with a simple buggy SUT

To get a first impression of the challenges associated with GUI testing, you
will be using a given System Under Test (SUT) that consists of a simple
Calculator with several failures. Your task is to setup a test which finds
the failures within this SUT. To achieve this, you will use TESTAR which
automatically stresses GUI-based applications and can – once setup correctly
– detect specific types of errors. Your goal is to find as many errors as
possible and reproduce them using TESTAR.

3 The Virtual Machine

For this handson we created a virtual machine with software that is needed
already installed. To run the virtual machine you will need to run virtual-
box version 5.2.18 or later. If you do not have VirtualBox 5.2.18 on your
machine you can download VirtualBox 5.2.18 here: https://download.

virtualbox.org/virtualbox/5.2.18/ .

1TESTAR is a result of FITTEST, a European project that run from 2010 till 2013.
More info www.testar.org

4

https://download.virtualbox.org/virtualbox/5.2.18/
https://download.virtualbox.org/virtualbox/5.2.18/
www.testar.org

If you have a newer version (> 5.2.18) of VirtualBox installed, you
will need to update the ”VBox Guest Additions” on the virtual machine to
the same version as your VirtualBox version. Please refer to the VirtualBox
Manual on how to do this.

Minimal resource requirements for the VirtualBox Host:

• VirtualBox version ≥ 5.2.18

• Recent Dual core CPU or better

• 8 GB Memory

• about 80 GB free diskspace

The hands-on OVA-image can be downloaded from the Testar web-
site (https://testar.org/images/<image name>). You will be given
<image name> during the training-sessions. If you are doing the hands-on
on our own, please send an email to info@testar.org to obtain the latest
image.

The OVA-image is about 22GB downloaded.

� HANDSON: Import the downloaded OVA-image in VirtualBox via
”File” → ”Import Appliance”.

Note: After importing the OVA image about 50GB is used by the
virtual machine. The disk-usage will grow with usage and is maximized
at 200GB, with normal usage it should not grow beyond 60GB during this
Handson.

On Windows 10 you can use:

username: ”testar”

password: ”testar”.

� HANDSON: Startup the virtual machine in VirtualBox and try to
login as the ”testar” user.

4 Downloading and installing TESTAR

You will have to download the testar-2.0.1.zip from the TESTAR website
and unpack the zip file into the C:\ directory with the instructions below.

5

https://testar.org/images/
info@testar.org

Figure 1: Right click and select ”Extract all”

• Go to https://testar.org/download/

• Download the TESTAR zip distribution created for this Handson.

• Go to the windows download directory and right-click on the just
downloaded testar-2.0.1.zip file. Select the ”Extract ALL” option in
the menu. (see Figure 3)

• Select for the destination directory C:\ . Click the ”Extract” button,
this will extract the testar-2.0.1.zip file, the installation can be found
in C:\testar\ (see Figure 2)

5 Hands-on step by step

5.1 Manually test the SUT

Before using TESTAR, test the SUT manually, to get an impression of poten-
tial failures. You can find the Calculator in C:\local\suts\Calculator.jar.
You can either double click on the Calculator.jar file or in the command
prompt type java -jar C:\local\suts\Calculator.jar.

� HANDSON: How many and what type of failures can you find?

6

Figure 2: Unzip testar-2.0.1.zip file in windows

5.2 Starting up TESTAR

Now let us start up TESTAR to see what it can do. In the bin directory of
the unpacked testar-directory there is a testar.bat.

Open the windows prompt that is on the desktop and type testar.bat.
On Enter the GUI of TESTAR starts up.

Basically the GUI of TESTAR is a dialog that enables us to configure
the values that are present in the test.settings file. These settings define
details about the SUT that tell TESTAR what and how to test. For example,
in the ”General Settings”-Tab you can see a SUT connector, that is a setting
that defines the way that TESTAR connects to the SUT. The default is set
to connect through COMMAND_LINE. In the text field you can now type the
following command to indicate to TESTAR that you want to connect to the
Calculator as a java jar:

java -jar \local\suts\Calculator.jar

Let us start by clicking on the SPY button (the one with the mag-
nifying class). This one enables us to spy the buttons and other widgets of
the SUT and see all the information that TESTAR is able to extract. Hover
over the different parts of the GUI and look for yourself.

7

Figure 3: Starting up TESTAR

5.3 The SPY Mode

The SPY mode allows you to inspect the widget controls of the GUI. In the
spy mode you can:

• See what actions TESTAR is able to extract and choose from. The
green dots represent the available widgets a user can click on in that
specific state of the GUI.

• Hover over an element to show the properties and information of that
element or widget.

• Press Shift + ↑ to show extended information and properties while
hovering over an element. This way you can find more details, for ex-
ample about the titles of the elements. To go back to less information
just press Shift + ↑ again.

To leave SPY mode and return to TESTAR start-up dialog, press Shift +
↓ , or close the system you were spying.

Figure 4 shows how to go from mode to mode and back to TESTAR.
A summary of the shortcuts in Appendix A. It is a good idea to become
familiar with this Mode and its shortcuts.

8

estT *
ar.org

SPY

GENERATE

RECORD

REPLAY

SHIFT +

Down SH
IF

T
+

Do
wn

Close SUT

Shift + Up SHIFT + Up

Close viewerSHIFT +
Down

SHIFT +
DownSHIFT +

Left

Sh
ift

 +
 U

p

Shift + Up

Figure 4: TESTAR Modes

9

Figure 5: TESTAR test cycle

5.4 The GENERATE mode

In this mode, the TESTAR tool carries out automated testing following the
test cycle depicted in Figure 5.

Basically, it derives a set of possible actions for the current state that
the GUI of the SUT is in. Then, it automatically selects and executes an
action from this set which makes the SUT go to a new GUI state. This new
state is evaluated with the available oracles. If no failure is found, again
a set of possible actions for the new state is derived, one action is selected
and executed, etc. This continues until a failure has been found or until a
stopping criteria is reached. With the right test setup all you’ll need to do
is to wait for your tests to finish.

The default behaviour includes random selection of actions and im-
plicit oracles for the detection of the violation of general-purpose system
requirements:

• the SUT should not crash,

• the SUT should not find itself in an unresponsive state (freeze), and

10

• the UI state should not contain any widget with suspicious titles like
error, problem, exception, etc.

Now let us do some automated testing. Click on the Generate but-
ton to start running tests as specified by the test setup.

Like in the SPY mode, you will be able to toggle on/off the visual-
ization of the UI actions by pressing Shift + ↑ . The following color codes
are applied for visualization during the test:

• green dots for UI actions that TESTAR can detect and execute, and

• red dot for the currently selected UI action being executed.

5.5 RECORD mode

You can go from Generate to Record mode and back with the keyboard
shortcut Shift + → .

In Record-mode you will be able to take over TESTAR’s test con-
trol and manually perform some actions during a test. This is particularly
interesting if you want to force the test to move to a concrete part of the UI
and/or if you want to move the test out of the current part of the UI.

� HANDSON: Run some tests. These are monkey test. TESTAR can see
the controls of the SUT’s UI and can automatically detect possible actions.
It randomly selects and executes these actions. Try to interact during the
tests at any time by going to the Record mode. You can stop by pressing
shortcut (Shift + ↓) to go back to the TESTAR start-up dialog.

In the ”General Settings”-Tab you can configure the number of se-
quences you want to test and the length (i.e. number of actions) of these
sequences. In the ”Time Settings”-Tab you can set the action duration and
the time that TESTAR waits after executing each action. Play with the
settings and observe what happens.

Until now you should have familiarized yourself a bit with the tool.
TESTAR does not only generate random sequences, it also captures every
action it executes and can thus replay sequences. The directory

\testar\bin\output\sequences\

contains all sequences that the tool generated.

11

� HANDSON: Set TESTAR to generate a test sequence with a maximum
of 30 actions and then replay it. To replay it you can use the Replay button
and specify the path to the sequence.

TESTAR generates more outputs than just the sequences. In Ap-
pendix B you can find table that explains what is in the other output direc-
tories.

5.6 Design a Test Oracle

The default behavior of TESTAR can find only certain types of failures. In
order to detect a wider variety of failures, TESTAR allows the user to define
application specific oracles. The oracle tells whether a specific GUI state is
correct, faulty or suspicious. TESTAR comes with default implicit oracles
that can detect the violation of the general-purpose system requirements
mentioned above. While you were playing with the SUT a bit, you probably
detected a few failures on your own, such as dialogs with exception messages.
To detect such failures, one can simply scan the current GUI state for spe-
cific words, such as ”exception” or ”error” or ”NullPointerException”, etc.
The ”Oracle”-Tab has a field ”Suspicious Titles” in which you can write
Java Regular Expressions23. TESTAR will use these expressions after the
execution of each action in order to find potential matches with the titles of
the widgets. For example:

.*[Ff]aultystring.*|SomeOtherFaultyString

This expression will make TESTAR look for the string ”Faultystring”
(upper- or lowercase F) anywhere on the screen in any position as well
as for the exact match ”SomeOtherFaultyString”. If TESTAR encounters
such a string, it will verdict a suspicious output and save the corresponding
sequence under:

C:\testar\bin\output\sequences_suspicioustitles\

� HANDSON: Write regular expressions for the failures that you have
encountered in the SUT. Run some tests. Did you find any failures with
your oracles? Replay a test sequence that found a bug.

2See for example http://www.vogella.com/tutorials/JavaRegularExpressions/

article.html
3https://zeroturnaround.com/rebellabs/java-regular-expressions-cheat-sheet/

12

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html
http://www.vogella.com/tutorials/JavaRegularExpressions/article.html
https://zeroturnaround.com/rebellabs/java-regular-expressions-cheat-sheet/

5.7 Adjust TESTAR’s Behavior

You might have observed, that from time to time, TESTAR executes ”un-
desirable” actions. For example, actions that minimizes the SUT or even
terminates the SUT. This is not optimal for the testing process. Even worse:
If you observed the tool’s output you might have noticed that it detects
a ”crash” whenever it closes the main window. Obviously, the tool does
not know that closing the main window terminates the application. In the
”Filters”-Tab you can find an input field that allows you to filter actions by
defining a regular expression. The field is similar to the ”Suspicious Titles”
in the ”Oracles”-Tab. TESTAR will ignore all actions that exercise control
elements whose title matches the given regular expression. For example:

.*Backspace.*|.*CE.*|.*View.*

This expression will ignore clicks to all control elements whose titles
contain the given strings.

� HANDSON: Configure TESTAR such that it does not close or mini-
mize the window anymore. In addition disallow clicks to the ”Open File”
menu item, to prevent TESTAR to go wild on the operating system’s files.
Use the Spy Mode to see whether your action filters have an effect (”Shift
+ 1” to visualize the actions)!

You can also filter actions while being in SPY mode, by using the
clickfilter-feature. CAPS LOCK toggles the clickfilter feature that enables
you to filter actions by clicking on them in Spy mode. This comes in very
handy when setting up your tests. Once this feature is enabled, you can
just hover over the widget and press Ctrl to filter the actions on this widget
from being selected during testing (you don’t have to press mouse button
on the widget). You can undo the filtering by pressing Shift + Ctrl while
hovering over a filtered widget. If the action filter you specified with a reg-
ular expression in the ”Filters”-Tab was ”too efficient”, you can unfilter a
specific action this way. You can also filter several actions at once by a drag-
ging a square around the widgets while pressing Ctrl . Filtered actions will
be stored in the file protocol_filter.xml that you can find in TESTAR’s
protocol folder (\testar\bin\settings\desktop_generic).

� HANDSON: Start the calculator in SPY mode and press Shift + 1

to visualize all the green dots (those are the available, unfiltered actions).
Then enable the clickfilter feature by pressing CAPS LOCK and filter out some
actions to see the effect of green dots disappearing. You can also check the

13

protocol_filter.xml.

5.8 The test.settings file

As indicated before, the start-up dialog of TESTAR enables us to configure
the values that are present in the test.settings file.

We have provided a predefined set of test.settings for generic desktop
and web applications. You can find them under the settings folder in TES-
TAR’s bin folder (\testar\bin) Each test settings configuration is stored
inside a unique subfolder (e.g. desktop generic), which contains:

1. a Java source file (e.g. Protocol_desktop_generic.java) with the
programmable test protocol (more about that later in Section 5.14).

2. a test.settings file, which contains a list of test properties.

3. a protocol_filter.xml file, if there is filtered actions as we have
commented previously.

In the settings directory we can see a file ending with the extension
.sse. This file is used to indicate from which folder TESTAR will choose
the settings. This protocol selection can be changed by editing the file.sse
name directly or through the TESTAR user interface, selecting the desired
protocol from the corresponding dropdown-menu in the ”General Settings”-
Tab.

If you want, you can also edit the files directly. For now, to illustrate
we refer to Figure 6, where you can see part of the test.settings file for the
calculator application. More settings are explained in detail in Appendix C.

� HANDSON: Change the name of the .sse file and start up TESTAR
again to see the effect. What if you delete the .sse file?

5.9 Process Listener

Besides looking for expressions of error in the different widgets that make up
the interface, TESTAR can interact with the process of desktop applications,
listening and finding errors in the buffers of its process. TESTAR works with
the output of the processes in two different ways:

14

###

TESTAR mode

#

Set the mode you want TESTAR to start in: Spy, Generate, Replay

###

Mode = Spy

###

Connect to the System Under Test (SUT)

#

SUTCONNECTOR = COMMAND_LINE, SUTConnectorValue property must

be a commandline that starts the SUT. It should work when

typed into a command prompt (e.g. java -jar SUTs/calc.jar). For

web applications, follow this format: web_browser_path SUT_URL.

#

SUTCONNECTOR = SUT_WINDOW_TITLE, then SUTConnectorValue property

must be the title displayed in the SUT’ main window. The SUT

must be manually started and closed.

#

SUTCONNECTOR = SUT_PROCESS_NAME: SUTConnectorValue property must

be the process name of the SUT. The SUT must be manually started

and closed.

###

SUTConnector = COMMAND_LINE

SUTConnectorValue = java -jar "\local\suts\Calculator.jar"

###

Sequences

#

Number of sequences and the length of these sequences

###

Sequences = 6

SequenceLength = 100

###

Oracles based on suspicious titles

#

Regular expression

###

SuspiciousTitles = .[eE]rror.*|.*[eE]xception.

###

Actionfilter

#

Regular expression. More filters can be added in Spy mode,

these will be added to the protocol_filter.xml file.

###

ClickFilter = .[cC]lose.*|.*[fF]ile.*|.*Minimize.*|.*[mM]inimizar.

Figure 6: Part of the test.settings file
15

• Suspicious Process Output Oracles, responsible for reporting and fin-
ishing the execution of an SUT in case of a coincidence.

• Process Logs, responsible for storing other outputs, but without fin-
ishing the execution of the SUT.

###

Oracles based on Suspicious Outputs detected by Process Listeners

#

(Only available for desktop applications through COMMAND_LINE)

#

Regular expression defines the suspicious outputs

###

ProcessListenerEnabled = true

SuspiciousProcessOutput = .*[eE]rror.*|.*[eE]xcep[ct]i[o?]n.*

These oracles work and are defined in the same way seen in the section
Design a Test Oracle, but to enable them we need to activate the Process
Listener Enabled mode. Currently these oracles based on process listeners
are only enabled for desktop applications executed from the COMMAND_LINE

option.

###

Process Logs

#

Required ProcessListenerEnabled

(Only available for desktop applications through COMMAND_LINE)

#

Allow TESTAR to store in its logs other possible matches found in the process

Use the regular expression .*.* if you want to store all the possible outputs of the process

###

ProcessLogs = .*.*

� HANDSON: Run the calculator with the Spy mode, switch to Gener-
ateManual mode (Shift + →), open the ”View” menu and select the option
”Digital Grouping”. What happened?

Calculator has closed unexpectedly, this is a type of error recog-
nized by TESTAR and therefore the sequence will be stored in the file
bin/output/sequences_unexpectedclose.

16

With the process listener disabled, we can only know that the SUT
has closed unexpectedly or that something freeze the application. Activate
the process listener will help us to obtain more information about the error
produced in our application.

� HANDSON: Run TESTAR and change to the Oracles tab, Enable Process Listener

and adds .*Exception.* as suspect title in the Suspicious Process Output.
Run the calculator and repeat the same sequence of actions.

Now the output process information it will be stored according to its
sequence in the new folder bin/output/ProcessLogs

5.10 Failure BINGO!

� HANDSON: Now that you know how to use the tool, your task is to
setup a longer test, e.g. 30 sequences with a length of 50 actions (feel free
to use different values). Run the tool and observe its output! Does it find
and report the failures? Can you replay the sequences that found failures
and can you reproduce the failures? If the tool executes undesirable actions,
improve your setup and restart the test. At the end of this task you should
have a folder with several erroneous sequences that can be replayed and
expose failures.

� HANDSON: Find as many failures as possible and report on how to
reproduce them. Go to Appendix D there you will find a table and a Bingo
card to fill in all the failures you have found and how to reproduce them.
Yell BINGO!! if you are the first to fill the card. The BINGO is valid if
the ”How to reproduce fields” can really reproduce the bug. Note that this
can be done manually or with TESTAR replay.

5.11 Connecting with a SUT: the SUT connectors

Until now we have connected to the SUT through the COMMAND_LINE. In the
”General Settings”-Tab, that option was selected from the drop-down menu.
In the text field we indicated that the COMMAND_LINE-command to connect
to the SUT was: java -jar \local\suts\Calculator.jar.

However, if a Java application has to be executed using the .exe
file, it is better to use the SUT_WINDOWS_TITLE as the "SUT Connector".
When using SUT_WINDOWS_TITLE, the application should already be running
(started manually) before starting TESTAR. Then TESTAR will search for

17

an application that has a main window with the indicated title.

The third option is to connect through the SUT_PROCESS_NAME. That
might be needed if the COMMAND_LINE is not working and the window does
not have a static title to connect. When using SUT_PROCESS_NAME, the
application should already be running (started manually) before starting
TESTAR. When using SUT_PROCESS_NAME as the "SUT Connector", TES-
TAR will search for a process with a process name matching the executable
of the SUT.

To test Java applications it is recommended to use COMMAND_LINE

instead of SUT_PROCESS_NAME. This is because the process name of a Java
application is java.exe and hence cannot be matched to the executable.

SUT_WINDOWS_TITLE and SUT_PROCESS_NAME allow you to start test-
ing the SUT from a specific state, instead of the starting state of the SUT.
In addition to manually starting the SUT and then starting TESTAR, it is
possible to use a test script to automatically start the SUT and execute it
into a specific state before (automatically) starting TESTAR.

� HANDSON: Use SUT_WINDOWS_TITLE and try to connect to the calcu-
lator.

� HANDSON: Use SUT_PROCESS_NAME and try to connect to Windows
Notepad.

5.12 Play with the Tool and some other applications

The calculator SUT is obviously very simple, we wrote it for the sake of this
practical exercise. However, TESTAR can test more complex SUTs.

� HANDSON: You can change the path to another SUT if you like to
see what happens when you test something like:

• Microsoft Paint

• Notepad

• VLC media player

Be careful, though, the tool might perform dangerous and unexpected ac-
tions!

18

5.13 Testing web applications

Bitrix24 is a complete suite of social collaboration, communication and man-
agement tools for your team. We have already configured a test.settings file
for TESTAR for bitrix24 in the web generic protocol.

Starting up TESTAR up with the web generic protocol, will use Fire-
fox Browser to start up www.bitrix24.com/auth. We get a screen that asks
us to login. Evidently, letting TESTAR guess values randomly will take us
a long time to enter. We would like TESTAR to enter when it starts up the
system. For this we can edit the protocol that TESTAR uses to implement
the test-cycle from Figure 5. In the next section this is explained.

5.14 Editing the protocol

TESTAR offers a more detailed API in the form of a Java protocol. In
the ”General Settings”-Tab of the TESTAR dialog you can click the ”Edit
Protocol” button to see the default source code that the tool uses to perform
its tests. The source code allows you to write much more fine-grained oracles
and definitions for drag and drop actions etc.

� HANDSON: Start TESTAR and, in the ”General Settings”-Tab, select
the web generic protocol. Then click on ”Edit Protocol”. Look at the code
and try to match each of the methods in the protocol with a square in the
TESTAR test-cycle from Figure 5.

5.14.1 Editing the protocol to logon

If we want TESTAR to automatically login to bitrix24 when we start up
the system, we need to edit the web generic protocol. Bitrix24 remem-
bers the login even if you close the browser during testing, so we can edit
startSystem() method so that the login is done only once when TES-
TAR starts. The other option is to edit beginSequence() method to login
and finishSequence() method to logout. If the application would re-
quire login each time the browser is closed, then we would have to edit
beginSequence() method.

� HANDSON: Let us add a piece of code so we can do the login. The
TESTAR has a user account with:

username: tvos@pros.upv.es

password: testarbitrix24

19

www.bitrix24.com/auth

First, you need to make a new CompoundAction builder, that contains a
series of actions that you want to execute when the system starts up. Note
that when the username is being typed, it is assumed that keyboard focus
is on the user field, but this may not be the case when you start up. You
might need to add some TABs to make sure that this assumption holds.

new CompoundAction.Builder ()

.add(new Type("my user") ,0.1) // assume keyboard focus is

//on the user field

.add(new KeyDown(KBKeys.VK_TAB) ,0.5) // assume next focusable

// field is pass

.add(new Type("my user pass") ,0.1)

.add(new KeyDown(KBKeys.VK_ENTER) ,0.5). build () // assume login

//is performed

//by ENTER

.run(sut , null , 0.1);

return sut;

You might need to add some Util.pause(number) to give the website
time to render completely before you execute some CompoundAction.

5.14.2 Editing the protocol to add an oracle

If we want to add oracles other than those that can be represented with the
regular expressions, we can edit the get_Verdict() method.

Let us look at a small example, where we want to check in every state
that the widgets that contains some text (i.e. its NativeRole is ”UIAText”)
can fit a font size that is at least the MINIMUM_FONT_SIZE. This can be done
by writing the following piece of code returning a Verdict.

Verdict getSmallTextVerdict(State state ,

Widget w,

Role role ,

Shape shape){

final int MINIMUM_FONT_SIZE = 8; // px

if (role != null

&& role.equals(NativeLinker.getNativeRole("UIAText"))

&& shape.height () < MINIMUM_FONT_SIZE

)

return new Verdict(SEVERITY_WARNING ,

"Not all texts have a size greater than "

+ MINIMUM_FONT_SIZE + "px");

else return Verdict.OK;

}

20

Then we can call this method in a get_Verdict while loop for every state.

Role role;

String title;

Shape shape;

// apply the oracles to all widgets

for(Widget w : state){

role = w.get(Tags.Role , null);

title = w.get(Title , "");

shape = w.get(Tags.Shape , null);

// check for too small texts to be legible

verdict = verdict.join(getSmallTextVerdict(state , w, role , shape));

}

return verdict;

� HANDSON: Try to add a piece of code that defines an oracle that
checks whether every image on the screen (i.e. its NativeRole is ”UIAIm-
age”) has an additional textual description according to the WAI guidelines
for accesible webpages.

5.15 Testing Java Swing applications

� HANDSON: Try to test the JEdit application with the generic proto-
col. What is happening? This is a Java Swing application and the accessibil-
ity API does not work for those. It does not give TESTAR the information
it needs to get the current state and all the widget information.

To test Java Swing applications, it is necessary to make some changes
in the Windows operating system configuration to enable the Java Access
Bridge technology. This can be done from the Windows control panel as
follows:

Control Panel → Ease of Access → Ease of Access Center → Make the
computer easier to see → Other installed programs → Enable Java Access
Bridge

Once the Java Access Bridge technology is enabled in the operating
system, the "AccessBridgeEnabled" variable must be set to "true" in the
test.settings file.

###

Java Swing applications & Access Bridge Enabled

21

#

Activate the Java Access Bridge in your Windows System:

(Control Panel / Ease of Access / Ease of Access Center /

Make the computer easier to see)

#

Enable the variable Access Bridge Enabled in TESTAR as true

###

AccessBridgeEnabled = true

� HANDSON: Change the configuration of the Windows Operating Sys-
tem by enabling the Java Accesibility Bridge. Change the test.settings

file of Desktop generic to enable the Java Access Bridge. Now you can
test for example JEdit and implement the needed action filters.

We could edit the test settings for AccessBridgeEnabled from false to true
for Swing applications and back again for non-Swing applications. However,
we can also make a new protocol only for Swing applications. This will make
switching between different type of applications a lot easier. Adding a new
protocol is done as follows.

In the settings folder (\testar\bin\settings), we create a new
folder named, for example, desktop_swing. In this directory we add the files
Protocol_desktop_swing.java and test.settings. We can edit those
files to prepare a specific configuration for the Java Swing applications, and
avoid the constant modification of the rest of the protocols.

� HANDSON: Create a new protocol folder to separate configuration of
generic applications and Java Swing applications. Modify the new protocol
files to prepare a configuration for Java Swing. Select your new protocol
and check that it works correctly.

For some widgets of swing applications, the accessibility API infers
incorrect values for the Role property, e.g. it can infer that the Role is
”Text” while it is actually a ”Clickable” item. This happens for example
for widgets that inherit from UIAList, UIAComboBox and UIATree. To
understand better what is going on here, we will guide you through the
following modifications using JEdit as the example SUT.

� HANDSON: Start TESTAR with Jedit in SPY mode, and enable the
visualization of green dots (remember this was done with Shift + 1). Now
navigate to the Menu Utilities and click on Global Options. Inspect the
widgets that belong to the menu on the left. You can see that the widgets

22

belonging to this menu are correctly detected by TESTAR, but their ac-
cessibility properties indicate that these are plain text (UIAText) while it
should be a clickable widget.

By editing the protocol, we can modify TESTAR to customize the
action derivation of the application we want to test. Therefore we will add
the following modifications to allow actions on these widgets. In the derive
actions method, when iterating through the enabled widgets, we will add
actions to these problematic widgets.

//Force actions on some widgets with a wrong accessibility

//This is optional , you can comment this out if your Swing

// applications doesn ’t need it.

if(w.get(Tags.Role). toString (). contains("Tree")

||

(w.get(Tags.Role). toString (). contains("ComboBox")

||

(w.get(Tags.Role). toString (). contains("List")

) {

widgetTree(w, actions);

}

//End of Force action

We will add the widgetTree method, prepared to add the action leftClickAt(widget),
after the method deriveActions:

//Force actions on widgets with a wrong accessibility

public void widgetTree(Widget w, Set <Action > actions) {

StdActionCompiler ac = new AnnotatingActionCompiler ();

actions.add(ac.leftClickAt(w));

w.set(Tags.ActionSet , actions);

for(int i = 0; i<w.childCount (); i++) {

widgetTree(w.child(i), actions);

}

}

� HANDSON: Make the changes in the swing protocol. Compile the
protocol verifying that there are no faults. Open JEdit and verify that
these widgets are now enabled to perform some click action Shift + 1

5.16 Some ways to Analyse TESTAR output

There are several way you can visualize the results of the tests.

• TESTAR view function with screen shots

• Query a OrientDB graph database

23

5.16.1 Viewing executed test sequences

Sometimes the replay function of TESTAR is not able to reproduce the
failure. During testing screenshot are made. These screenshots with action
can be viewed in the View mode.

When you start up TESTAR and click on the view button, TESTAR
will ask you for the test sequence (file) to inspect as a list of screenshots.
With the small reproduction toolbar on top you can navigate through the
test. Moving one UI action forward or backward, or jumping to the begin-
ning or end of the test. The current displayed screenshot of the UI state in
the test and the UI action that was executed in that state is marked in the
screenshot.

� HANDSON: Start up TESTAR and click on the View button on the
top richt side of the TESTAR GUI. Select one of your previous test se-
quences. Browse the screen shots by clicking on the previous and next
button.

5.16.2 Using the graph database

Besides the standard graph reports that are available in the output\graphs

folder, TESTAR has the (EXPERIMENTAL) capability to export the dis-
covered states, widgets and executed actions to an OrientDb graph database.
The database can be used interactively.

� HANDSON: Run a test sequence on a SUT with GraphDB enabled by
executing the following 3 steps:

1. Set parameters in the ”GraphDB”-Tab of the TESTAR Dialog or
test.settings file.

###

GraphDB

#

parameters for storing the graph representation in OrientDB

###

GraphDBEnabled = true

GraphDBUrl = plocal:/local/orientdb/databases/<dbname>

GraphDBUser = admin

GraphDBPassword = admin

<dbname> is the user-defined filename of the database.

24

2. Review the test protocol (through the TESTAR Dialog choosing ’Edit
Protocol’ button). Make sure that the protocol when deriving actions,
stores the widgets in the graph database.

The desktop generic protocol already takes care of this requirement.
Other protocols may need to be revised. This can be done by calling
the storeWidget method in the deriveActions method of the protocol.
The code below is for illustration, it is not intended as the complete
implementation of the deriveActions method.

protected Set <Action > deriveActions(SUT system , State state)

throws ActionBuildException{

//... skeleton iterate through all widgets

for(Widget w : state){

storeWidget(state.get(Tags.ConcreteID), w);

//..

}

A reference implementation can also be copied from the desktop generic
protocol.

3. Click on the Generate button to start the test

After TESTAR has completed its test sequence the Graph database
can be used to analyse and query the results.

� HANDSON: Analyse the test results with OrientDB by doing the fol-
lowing steps:

1. Start the OrientDB Server.
This can be done by clicking on the OrientDB Server Icon on the
desktop. This will launch the server at port 2480.

2. Connect to the graph database.
Open a browser with url http://localhost:2480, choose the database
that TESTAR populated and supply the user ”admin” with password
”admin” .

3. Explore the graph database.
From the top menu select ’Graph’ and at the Graph Editor enter on
line 1: ’select * from V’. Subsequently, press the play button, this
will render the graph. Orient studio is limited by a display of 20 nodes
by default. To change this to something bigger, like 1000, click the
wrench icon (right part of the screen) and alter the value for ’Limit’.

25

http://localhost:2480

4. Stop the Server.
In the server-command window, enter Ctrl -C and stop the batch job

Notes:

• The OrientDb graph editor is suitable for structures up to a few hun-
dred nodes and edges. Larger ones will end up as a hairball graphs.

• Filtering can be achieved by adding a Where-clause to the query like:
select from V where (not (@class in [’AbsState’, ’AbstractAction’, ’Ab-
sRoleTitle’, ’AbsRoleTitlePath’, ’AbsRole’]))

• Annotations can be altered by clicking a node (or edge) and using the
settings panel in the left navigation bar.

• TESTAR can raise an Exception ”<Cannot open local storage...”.
This occurs when the database was created on a previous run and
server is still running. The solution for this is: Either stop the server
and rerun the test sequence or leave the server running and just rename
the existing database to a new one.

� HANDSON: Try to find the Starting node by executing the proper
query.

26

A Keyboard shortcuts

Several keyboard shortcuts are available for the different TESTAR working
modes (i.e. SPY, GENERATE, RECORD and REPLAY):

Keyboard shortcut Effect Working modes
Spy Generate Record Replay

Shift + Arrow Down Close the mode and go back X X X X
to TESTAR dialog

Shift + Arrow Right Switch the working mode X X
Shift + Space Toggle slow motion test X X

CAPS LOCK/TAB + UI widgets’ X
(Shift) Ctrl actions filtering

Table 1: Keyboard shortcuts

27

B Directories

./settings Tests set ups

./output Reports: logs, screenshots, graphs, metrics, serialized tests

./output/temp Temporary files such as the last recorded test sequence

./output/sequences All the serialized test sequences

./output/sequences V Classified test sequences by verdict V

./output/srcshots Screenshots of tests UI states and executed UI actions

./output/logs Tests logging data

./output/graphs Tests graphing for visual analysis

./output/metrics Tests performance indicators

28

C Test settings

• ActionDuration = a non-negative decimal. Sets the speed, in sec-
onds, at which an UI action is performed. For example, typing a text
will introduce delays between each key stroke.

• AlgorithmFormsFilling = true or false. Enables or disables a spe-
cific UI action selection algorithm that will try to populate data in UI
forms.

• ClickFilter = regular expression. Prevents UI actions to be per-
formed on UI elements whose TITLE matches the regular expression.
The rationale behind this is that certain UI actions might be dangerous
or undesirable without human supervision (e.g. printing documents,
files operations). For example: .*[cC]lose.*|.*[eE]xit.*|.*[pP]rint.*).

• CopyFromTo = (source file path;target file path)*. A list of (>=0)
pairs of source and target files to copy before a test starts (click the
text-area and a file dialog will pop up). Sometimes, it can be use-
ful to restore certain configuration files to their default prior to SUT
execution, so that the SUT starts from a desired state.

• Delete = (file path)*. A list of (>=0) files to delete before a test
starts (click the text-area and a file dialog will pop up). Certain SUTs
may generate configuration files, temporary files and/or files that save
the SUT’ state. Thus, you can restore your SUT environment to a
desired state removing files generated from previous executions.

• DrawWidgetInfo = true or false. Sets whether to display detailed
overlay information, inside the Spy mode over the selected widget in
UI of the SUT.

• DrawWidgetTree = true or false. Sets whether to display a graph-
ical representation of the widget-tree, inside the Spy mode for the
selected widget in the SUT’ UI.

• DrawWidgetUnderCursor = true or false. Sets whether to display
brief overlay information, inside the Spy mode over the selected widget
in the UI of the SUT.

• ExplorationSampleInterval = a positive number. Sets the metrics
sampling interval by the number of executed UI actions during a test.

• ForceForeground = true or false. Sets whether to keep the SUT’
UI window active in the screen (e.g. when its minimised or when a
process is started and its UI is in front, etc.).

29

• ForceToSequenceLength = true or false. Setting the value to true,
if a test fails (e.g. the SUT crashes), TESTAR continues the test
sequence until it reaches the specified test sequence length (check Se-
quenceLength property). Otherwise (false value), the test will finish in
the presence of a fail.

• MaxTime = a positive number. Sets a time window, in seconds, after
which the test is finished (e.g. stop after an hour, a day or a week).

• Mode = Spy, Generate or GenerateDebug (check ShowVisualSettings-
DialogOnStartup property). Runs the tool into the Spy, Generate or
GenerateDebug mode.

• NonReactingUIThreshold = a positive number. Sets a test win-
dow (number of UI actions) for which a non-reacting UI will force to
perform UI actions that could potentially make the UI to react (e.g.
an ESC key stroke to close a popup dialog box).

• LogLevel = 0, 1 or 2. Sets the logging level to critical messages (0),
information messages (1) or debug messages (2).

• OnlySaveFaultySequences = true or false. Sets whether to save
non-fail test sequences.

• ProcessesToKillDuringTest = regular expression. Any process
name that matches the regular expression and is started during a test
will be automatically killed. The rationale behind this is that some UI
actions could start undesirable processes (e.g. an email client). For
example: (e.g. .*[oO]utlook.*|firefox.exe).

• ProtocolClass = settings folder/Test protocol class name. Links to
the test protocol class under the folder denoted by the MyClassPath
property.

• ReplayRetryTime = a positive number. Inside the replay mode,
establishes the time window in seconds for trying to replay a UI action
of a replayed test sequence.

• SequenceLength = a positive number. Sets each test sequence (check
Sequences property) length as the number of UI actions to perform4.
Check the StopGenerationOnFault, ForceToSequenceLength, MaxTime,
SuspiciousTitles, TimeToFreeze and ProtocolClass properties for spe-
cific behaviour.

• Sequences = a positive number. Number of times to repeat a test.

4Note: higher values will consume more hardware resources, specialy if graphing was
activated.

30

• ShowVisualSettingsDialogOnStartup = true or false. Sets whether
to display the tool UI. If false is used, then the tool will run in the
mode of the Mode property.

• StartupTime = a positive number. Sets how many seconds to wait
for the SUT to be ready for testing (its UI being accesible by TES-
TAR). If the SUT did not start on time the test will not run. Other-
wise, test will start as soon as the UI is accesible. Take into account
that the first time the SUT is run on your environment will usually
take more time than next executions (e.g. due to memory catching).

• StopGenerationOnFault = true or false. Sets whether to finish a
test in the presence of a fail (e.g. a SUT crash). Setting it to false
does not necessarily mean that the test will continue, but the test will
try to continue as far as the SUT accepts additional UI actions and
the test set up does not finish the test by other means (e.g. MaxTime,
SuspiciousTitles, TimeToFreeze or ProtocolClass properties).

• SUTConnector = COMMAND LINE, SUT WINDOW TITLE or
SUT PROCESS NAME. Sets the approach used to connect with your
SUT:

– COMMAND LINE: SUTConnectorValue property must be a com-
mand line that starts the SUT. It should work from a Command
Prompt terminal window (e.g. java -jar SUTs/calc.jar). For web
applications follow the next format: web browser path SUT URL.

– SUT WINDOW TITLE: SUTConnectorValue property must be
the non-empty title displayed in the SUT’s main window. The
SUT must be manually started and closed.

– SUT PROCESS NAME: SUTConnectorValue property must be
the process name of the SUT. The SUT must be manually started
and closed.

• SUTConnectorValue = check SUTConnector property.

• SuspiciousTitles = a regular expression. Checks the UI for any sus-
picious title that could denote problems in the SUT. TESTAR checks
whether there exists a widget’ TITLE in the UI that matches the reg-
ular expression. If a match was found the test will continue but you
will find the issues found in the reports. For example, a critical mes-
sage like “A NullPointerException Exception has been thrown” can
be represented by the regular expression “.*NullPointerException.*”.

• TimeToFreeze = a positive number. Sets the time window, in sec-
onds, for which to wait for a not responding SUT. After that, the test

31

will finish with a fail. The rationale behind this is that the SUT could
hang, be performing heavy computations or be waiting for slow opera-
tions (e.g. bad internet connection). The value of the property is thus
a threshold after which the SUT is interpreted to have hung.

• TimeToWaitAfterAction = a non-negative decimal. Sets the delay,
in seconds, between UI actions during a test. It directly affects the
reproducibility of tests and tests performance. Setting it to a low value
will speed up the tests, but the SUT could not have finished processing
an action before the next action is executed by TESTAR. In the latter
case the test could not be reproducible, but it could reveal potential
faults (stress testing).

• UseRecordedActionDurationAndWaitTimeDuringReplay = true
or false. Inside the replay mode sets whether to use the action dura-
tion (check ActionDuration property) and action delay (check Time-
ToWaitAfterAction property) as specified in the recorded test sequence.
If set to false, the values from the current set up are used.

• VisualizeActions = true or false. Sets whether to display overlay
information, inside the Spy mode, for all the UI actions derived from
the test set up.

32

D Calculator Failures BINGO!

No. Type of failure How to reproduce

1 issue

2 critical
error

3 strange error
error

4 crash(es)

5 nullpointer
exception

33

6 nullpointer
exception
(simulated)

7 arithmetic
exception

8 runtime
exception

9 numberformat
exception

10 freeze

34

35

Index

action filter
clickfilter, 13
regular expression, 13

clickfilter feature, 13
CompoundAction builder, 20

Dialog Tab, see TESTAR Dialog Tabs

filter actions
clickfilter, 13
regular expression, 13

FITTEST, 4

general-purpose requirements, 10
GENERATE Mode, 10, 11
graph

database, 24
GUI, 4

Mode
GENERATE, 10, 11
RECORD, 11
REPLAY, 12
SPY, 8

oracle, 12
implicit, 12
suspicious title, 12

orientdb, 24

protocol, 19
edit, 19
method

beginSequence(), 19
finishSequence(), 19
get Verdict(), 20
startSystem(), 19

Protocol desktop generic.java, 14
web generic, 19

protocol filter.xml, 13

RECORD Mode, 11

regular expression, 12
REPLAY Mode, 12

SPY mode, 8
sse file, 14
stopping criteria, 10
SUT, 4

bitrix24, 19
Calculator (buggy), 4
connector, 7, 17

COMMAND LINE, 7, 17
SUT PROCESS NAME, 18
SUT WINDOWS TITLE, 17

MS Paint, 18
Notepad, 18
VLC media player, 18

Swing applications, 21

Tab, see TESTAR Dialog Tabs
test.settings file, 7, 14
TESTAR

Dialog Tabs
Filters Settings, 13
General Settings, 7, 11, 14, 17
GraphDB, 24
Oracles, 12, 13
Time Settings, 11

Protocol, see protocol
web (www.testar.org), 4

Verdict, 20

36

	What is GUI Testing?
	We start with a simple buggy SUT
	The Virtual Machine
	Downloading and installing TESTAR
	Hands-on step by step
	Manually test the SUT
	Starting up TESTAR
	The SPY Mode
	The GENERATE mode
	RECORD mode
	Design a Test Oracle
	Adjust TESTAR's Behavior
	The test.settings file
	Process Listener
	Failure BINGO!
	Connecting with a SUT: the SUT connectors
	Play with the Tool and some other applications
	Testing web applications
	Editing the protocol
	Editing the protocol to logon
	Editing the protocol to add an oracle

	Testing Java Swing applications
	Some ways to Analyse TESTAR output
	Viewing executed test sequences
	Using the graph database

	Keyboard shortcuts
	Directories
	Test settings
	Calculator Failures BINGO!

