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Universitat Politècnica de València

Camino de vera s/n 46022, Valencia, Spain
{falmenar,aesparcia,mmartinez,urueda,tvos}@pros.upv.es

http://www.testar.org

Abstract. TESTAR is an open source tool for automated software testing that generates
test sequences on the fly based only on information derived from the Graphical User Interface
(GUI). At the core of TESTAR is the way to automatically select which actions to test;
finding the right algorithm to carry out this task can make significant differences to the
testing outcome.

In this work we evaluate Q-learning as a metaheuristic for action selection and carry out
experiments with a range of paramenters, using random selection as a baseline for the com-
parison. Two applications are used as Software Undder Test (SUT) in the experiments,
namely MS Powerpoint (a proprietary desktop application) and the Odoo enterprise man-
agement system (an open source web-based application). We introduce metrics to evaluate
the performance of the testing with TESTAR, which are valid even under the assumption
that access to the source code is not available and testing is only possible via the GUI.
These metrics are used to perform statistical analysis, showing that the superiority of action
selection by Q-learning can only be achieved through an adequate choice of parameters.

Mots-Clefs. Automated GUI Testing,Testing Metrics, Testing Web Applica-
tions, Q-learning

1 Introduction

The Graphical User Interface (GUI) represents a central point in any application from where the
user may access all the functionality. Hence, testing at the GUI level means taking the user’s per-
spective and is thus the ultimate way of verifying a program’ s correct behaviour. Current GUIs
can account for 45-60% of the entire source code [?] in any application and are often large and
complex. Consequently, it is difficult to test applications thoroughly through their GUI, especially
because GUIs are designed to be operated by humans, not machines. Moreover, they are inher-
ently non-static interfaces, subject to constant change caused by functionality updates, usability
enhancements, changing requirements or altered contexts. Automating the GUI testing process is
therefore a crucial task in order to minimise time-consuming and tedious manual testing.

TESTAR is an open source tool that performs automated testing via the GUI, using the op-
erating system’s Accessibility API to recognise GUI controls and their properties, and enabling
programmatic interaction with them. It derives sets of possible actions for each state the GUI is
in and selects and executes appropriate ones, thus creating a test sequence on the fly. TESTAR
has been successfully applied to various commercial and open source applications, both deskptop
and web-based ones, as shown in e.g. [?,?,?,?]; in most cases the action selection mechanism was
random choice, a procedure also known as monkey testing

In citeBV2012,BV14 the first attempts to action selection in TESTAR based on metaheuristics,
and especifically Q-learning, are described. However, the performance metrics used for evaluation
were the average time it took to crash the application under test and the reproducibility of the
crashes. Although the results were promising, they revealed problems with this choice of metrics,
which we try to address here. In this work we introduce four novel metrics specifically designed to
testing via the GUI and without access to the source code of the applications. Using these metrics
we compare various settings for Q-learning and also use random testing as a baseline.
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In order to carry out our study we chose two applications: the Odoo enterprise resource planning
(ERP) system and the PowerPoint presentation software. They are two very different types of SUT:
one is an open source web application and the other a proprietary desktop application.

We run experiments in three phases or iterations, refining the process after each phase, and
carry out statistical analysis on the results of the third phase.

The rest of this paper is structured as follows. Section 3 describes the action selection mecha-
nism using Q-learning. Section 4 introduces the metrics used for quality assessment of the testing
procedure. Section 5 summarises the experimental set up, the results obtained and the statistical
analysis carried out; it also highlights the problems encountered. Finally, in section 6 we present
some conclusions and outline areas for future work.

2 Related work

The existing literature in User Interface testing covers three approaches: capture-and-replay (C&R),
which involves recording user interactions and converting them into a script that can be replayed
repeatedly, visual-based which relies on image recognition techniques to visually interpret the im-
ages of the target UI [?] , and traversal-based, which uses information from the GUI (GUI reflection)
to traverse it [?], and can be used to check some general properties.

Current practice of UI testing relies mainly on Capture-and-Replay (C&R, also called Record-
and-Replay) tools. This is a mature technology, for which tools are widely available, be they com-
mercial or open source. However, a major problem with this approach is maintenance, as changes
in the UI usually render the created test scripts unusable. This problem becomes more severe with
the new generation of Internet-based applications, as these adapt their layout dynamically accord-
ing to the users’ needs. Hence, in spite of some degree of automation, GUI testing still involves
heavy load of manual work, which is costly and error prone [?].

Visual-based and traversal-based tools aim at solving the maintenance problem; the latter
group, to which TESTAR belongs, is considered to be the most resilient to changes in the SUT.

In order to evaluate the quality and performance of the testing suitable metrics must be defined.
For instance, in [?] Chaudhary et al propose metrics for event driven driven software. Memon et al
[?] propose a coverage criteria for GUI testing. However, knowing what to measure is still an area
that deserves further investigation. In this work we propose four such metrics which are suitable to
measure the quality of the GUI testing on web applications, based on the assumption that source
code is not available.

3 Using Q-learning for action selection in TESTAR

The choice of an action selection mechanism is one of the two main inputs for the human tester in
TESTAR (the other one being the custom protocol).

We have employed the Q-learning algorithm to guide the action selection process. Q-learning
[?] is a model-free reinforcement learning technique in which an agent, at a state s, must choose
one among a set of actions As available at that state. By performing an action a ∈ As, the agent
can move from state to state. Executing an action in a specific state provides the agent with a
reward (a numerical score which measures the utility of executing a given action in a given state).
The goal of the agent is to maximise its total reward, since it allows the algorithm to look ahead
when choosing actions to execute. It does this by learning which action is optimal for each state.
The action that is optimal for each state is the action that has the highest long-term reward.

Our version of the Q-learning algorithm, shown in Algorithm 3 is governed by two parameters:
the maximum reward, Rmax and the discount γ. Depending on how these are chosen the algorithm
will promote exploration or exploitation of the search space. The Rmax parameter determines
the initial reward unexplored actions have; so, a high value biases the search towards executing
unexplored actions. On the other hand, discount γ establishes how the reward of an action decreases
after being executed. Small γ values decrease the reward faster and vice versa.
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Require: Rmax > 0 /* reward for unexecuted actions */
Require: 0 < γ < 1 /* discount factor */
1: begin
2: start SUT
3: ∀(s, a) ∈ S ×A : Q(s, a)← Rmax

4: initialize s and available action As

5: repeat
6: a∗ ← maxa{Q(s, a)|a ∈ As}
7: execute a∗

8: obtain state s′ and available actions As′

9: Q(s, a∗)← R(s, a∗) + γ ·maxa∈As′Q(s′, a)
10: ec(a∗) ++
11: s← s′

12: until stopping criteria met
13: stop SUT
14: end
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R is set as follows:

R(s, a, s′) :=

{
Rmax if xa = 0
1
xa

otherwise

where xa is the number of times action a has been executed and Rmax is a large positive number
(in order to make actions not executed before attractive for the agent)

4 Testing performance metrics

Finding appropriate metrics for assessing the quality of the testing has been a long standing issue.
For instance, [?] defines a number of metrics for GUI testing, but these imply having access to the
code of the SUT; one of the strengths of TESTAR is precisely not relying on the assumption that
this is the case. However, this also implies that specific metrics must be defined.

In previous work [?] we used the number of crashes and the time to crash as a measure of
the testing performance, but these pose problems too, because they reveal nothing about to what
extent the SUT was explored, a fact particularly relevant if no crashes are detected. Aiming to
circumvent that issue, in this work the metrics were chosen as follows:

– Abstract states This metric refers to the number of different states, or windows in the GUI,
that are visited in the course of an execution.

– Longest path Any automated testing tool must ensure the deepest parts of the GUI are tested.
To measure whether the tool has just stayed on the surface or it has reached deeper, we define
the longest path as the longest sequence of non-repeated (i.e. excluding loops) consecutive
states visited.

– Minimum and maximum coverage per state We define the state coverage as the rate of
executed over total available actions in a given state/window; the metrics are the highest and
lowest such values across all windows. This allows us to know to what extent actions pertaining
to states were explored.

A consequence of not having access to the source code is that the metrics given above can be
used to compare the efficiency of different testing methods, but not to assess the overall goodness
of a method in isolation, because we do not know the global optima for each metric; for instance,
we cannot know exactly how many different states there are.

5 Experiments and results

5.1 The software under test (SUT)

We used two different applications in order to evaluate our Q-learning approach in TESTAR, Odoo
and PowerPoint.

Odoo 1 is an open source Enterprise Resource Planning software consisting of several enterprise
management applications that can be installed or not depending on the user needs. It can be
used to create websites, manage human resource (HR), finance, sales, projects and others. Odoo
has a client-server architecture and uses a PostgreSQL database as a management system. Once
deployed, we installed the mail, calendar, contacts, sales, inventory and project applications in
order to test a wide number of options.

PowerPoint Microsoft PowerPoint is a slide show presentation program currently developed by
Microsoft and part of its productivity software Microsoft Office. It is currently one of the most
commonly used presentation programs available.

1 See https://github.com/odoo/odoo for Odoo’s git repository and issue tracker, including a manual with
instructions on how to deploy the server and its requirements.
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5.2 Procedure

In order to test Odoo with TESTAR a server version of Odoo must first be deployed2. Then
TESTAR must be configured by supplying the URL that accesses the Odoo client and the browser
that will be used to launch it.

On the other hand, to test PowerPoint with TESTAR we must first install it and then TESTAR
must be configured by providing the specific command that would be used to run PowerPoint using
the cmd (Windows command prompt).

Next, for both tools we run TESTAR in spy mode; this uncovers possible problems with items
that may not be detected well, such as emergent windows. In addition, it helps detecting undesired
actions that might be performed by TESTAR that may bring problems such as involuntary file
deletion. A number of parameters must also be set up, which are given in Table 1. With these
settings and a first version of the TESTAR protocol3 we carried out three iterations of the testing
process, improving the protocol each time so as to remove the problems encountered.

Table 1. Experimental set up. We carried out three iterations involving the five sets. After each iteration
the results obtained were used to refine the TESTAR protocol so as to better adapt it to the application.

Set Max. actions per run Runs Action Selection Algorithm Parameters

Rmax γ
Q1 1000 30 Q-learning 1 0.20
Q20 1000 30 Q-learning 20 0.20
Q99 1000 30 Q-learning 99 0.50

Q10M 1000 30 Q-learning 9999999 0.95
RND 1000 30 random N/A N/A

5.3 Statistical analysis

We run the Kruskal-Wallis non parametric test, with α = 0.05, on the results for the five sets. In
iteration 3 the test shows that all the metrics have significant differences among the sets. Running
pair-wise comparisons provides the results shown in the boxplots contained in Figures 1 and 2;
these results are ordered in Table 2, where the shaded column is the best option. It can be seen
that for each SUT and metric the best choices are different; also, random selection turns out not
to be such a bad choice in most cases. This highlights the importance of an adequate choice of
parameters when using Q-learning for action selection.

One metric we have not considered in the statistical analysis is the number of failures encoun-
tered, shown in Table 3

In the case of Odoo we can see that although Q20 did not perform so well in the other metrics,
it does on the other hand find the higher number of failures (which involve stopping the execution
and hence having a lesser chance of increasing the value of other metrics); this must also be taken
into account when evaluating the different algorithms. However, for PowerPoint no failures were
encountered, so this metric reveals no information.

6 Conclusions

We have shown here the successful application of a Q-learning action selection strategy within the
TESTAR tool to the automated testing of the Odoo management software and the commercial
application PowerPoint. Q-learning was also compared to monkey testing, i.e. using random choice
for action selection. Four metrics were defined in order to evaluate the performance. Statistical

2 See the source install tutorial available from
https://www.odoo.com/documentation/8.0/setup/install.html

3 For more details the reader is referred to the tutorial available from www.testar.org
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Table 2. Results of the statistical comparison for the sets obtained in the third iteration. The shaded
column represents the best choice, the remaining ones are in order of preference.

Metric (Odoo) Set

Abstract states Q10M RND Q1 Q99 Q20
Longest path Q10M Q99 RND Q1 Q20

Maximum coverage per state Q10M Q20 RND Q1 Q99
Minimum coverage per state Q99 Q20 Q10M Q1 RND

Metric (PowerPoint) Set

Abstract states Q99 Q20 RND Q10M Q1
Longest path Q20 Q99 RND Q10M Q1

Maximum coverage per state Q10M Q20 Q99 RND Q1
Minimum coverage per state Q1 Q20 Q10M Q99 RND

Fig. 1. Boxplots for the four metrics with the results obtained for Odoo in Iteration 3.

Table 3. Number of failures encountered per algorithm in the 3rd iteration when testing Odoo. No failures
were encountered in PowerPoint.

Set (Odoo) Total Failures Unique failures

Q10M 3 1
Q99 0 0
Q20 6 2
Q1 2 1

RND 1 1
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Fig. 2. Boxplots for the four metrics with the results obtained for PowerPoint in Iteration 3.
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analysis reveals the superiority of the Q-learning-based method, provided the parameters of the
algorithm have been properly selected.

Further work will involve the improvement of the metrics. We will also explore more complex
metaheuristics for action selection, especially population based ones (such as ant colony optimisa-
tion and genetic programming) in order to improve over the relatively simple Q-learning algorithm.
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