
TESTAR: automated robustness testing at
the User Interface level

User Manual

Version 1.3 for Handson do-it-yourself Paderborn
(A-TEST @ FSE)

September 2017

website: www.testar.org

github: https://github.com/TESTARtool/TESTAR

contact: info@testar.org

http://www.testar.org
https://github.com/TESTARtool/TESTAR
mailto:info@testar.org

Table of contents CONTENTS

Contents
1 About 5

2 Getting TESTAR 6

3 Running TESTAR 6
3.1 Generate mode . 7
3.2 Spy mode . 9
3.3 Replay mode . 14
3.4 View mode . 14
3.5 Headless mode . 15

4 Test protocol 16
4.1 initialize method . 18
4.2 moreSequences method . 18
4.3 startSystem method . 18
4.4 beginSequence method . 18
4.5 getState method . 19
4.6 getVerdict method . 19
4.7 moreActions method . 19
4.8 deriveActions method . 20
4.9 selectAction method . 20
4.10 executeAction method . 21
4.11 stopSystem method . 21
4.12 finishSequence method . 21

5 Test reports 22
5.1 Tool logs . 22
5.2 Tests sequences . 23
5.3 Tests logs . 23
5.4 Tests UI screenshots . 27
5.5 Tests graphs . 27
5.6 Tests metrics . 39
5.7 How to analyse tests data . 40

6 Further documentation 42

7 Experimental features 42

8 Known issues 43

A Widgets and their properties 44
A.1 UI widget . 44
A.2 Accessibility technology . 44
A.3 Widget properties . 45

B UI States and Actions 48
B.1 UI States . 48
B.2 UI Action . 48

1

Table of contents CONTENTS

C Identifiers for Widgets, States and Actions 51

D Test settings 52

E Keyboard shortcuts 57

F Directories 58

2

Figures, Tables, Listings LISTINGS

List of Figures
1 TESTAR interface . 6
2 TESTAR testing cycle . 8
3 Spy mode: showing UI actions as green dots 10
4 Spy mode showing basic widget information. 10
5 Spy mode showing extended widget information. 11
6 Spy mode showing the whole widget tree. 12
7 Spy mode showing the widget-tree hierarchy 13
8 Spy mode, defining input values through ALT 13
9 Test protocol . 17
10 Minimal graph . 29
11 Minimal abstract graph . 30
12 Tiny abstract graph . 30
13 Tiny graph . 31
14 Screenshots graph . 32
15 Screenshots abstract graph . 33
16 Resumed minimal graph . 34
17 Resumed minimal abstract graph . 35
18 Resumed tiny abstract graph . 35
19 Resumed tiny graph . 36
20 Resumed screenshots graph . 37
21 Resumed screenshots abstract graph . 38
22 The state of a GUI can be described as a widget tree which captures property

values for each control. 45
23 Sample widget-tree representing the UI state at a concrete timestamp. 49
24 Working modes flowchart . 58

List of Tables
1 Spy mode through Shift + 1 - Actions visual appearances 9
2 Example CSV metrics 1/3 . 39
3 Example CSV metrics 2/3 . 39
4 Example CSV metrics 3/3 . 40
5 Keyboard shortcuts . 57
6 Directories . 58

Listings
1 input_values.xml . 14
2 The Java Methods that can be customized . 16
3 Sample test log . 23
4 Sample test clusters . 24
5 Sample test UI exploration curve . 24
6 Sample test statistics . 25
7 Sample test actions table . 26
8 Sample graph XML . 27

3

Figures, Tables, Listings LISTINGS

9 Sample STDOUT metrics . 40

4

About 1 ABOUT

1 About
TESTAR1 (also written as Test* following the logo of the tool) is a tool for automated testing
at the User Interface (UI) level of software applications (e.g. desktop and web applications).

TESTAR is not a Capture-and-Replay tool nor a Visual-based testing tool. TESTAR
does not record or need scripts. It uses accessibility technologies to access your User Interface
and craft tests on the fly. Whether the User Interface changes so do the tests. This way, no
test scripts need to be maintained.

TESTAR v1.0 was developed within the context of the FITTEST2 (Future Internet
Testing) project that run from 2010 till 2013. Since that first version, it went from versions
v1.1a to v1.2 due to financing obtained from:

• A proof of concept project financed by the Universitat Politècnica de València -
Programa de Prueba de Concepto 2014- (SP20141402).

• The SHIP project -SMEs and HEIs in Innovation Partnerships- (EACEA/A2/UHB/CL
554187).

• The PERTEST project -Testing of data persistence and user perspective for new
paradigms- (TIN2013-46928-C3-1-R).

Since 2014, TESTAR has been deployed and used in several companies with interesting
results, which show its potential to grow into a tool that can help companies improve testing
at the User Interface level.

TESTAR is available under the BSD-3 license3.

Many people have contributed (and are still contributing) to TESTAR. The TESTAR
team consists of: Tanja Vos (coordinator of FITTEST and the TESTAR development),
Sebastian Bauersfeld (PhD student within the FITTEST project), Urko Rueda (researcher
contracted by the FITTEST and SHIP project), Anna Isabel Esparcia (researcher contracted
by proof of concept and SHIP project), Francisco Almenar Pedros (Final Master thesis work
at the UPV), Mirella-Oreto Martinez Murillo (Final Master thesis work at the UPV), Wouter
Cox and Jean Marc (Worked jointly on their bachelor thesis at the OU and developed Linux
and Windows 10 platforms support), Davy Kager (bachelor thesis at the OU), Floren de
Gier (bachelor thesis at the OU), Fernando Pastor Ricos (bachelor thesis at the UPV).

1http://www.testar.org/
2http://crest.cs.ucl.ac.uk/fittest/ (EU project no: 257574 FP7 Call 8 ICT-Objective 1.2 Service Archi-

tectures and Infrastructures)
3http://opensource.org/licenses/BSD-3-Clause

5

http://www.testar.org/
http://crest.cs.ucl.ac.uk/fittest/
http://opensource.org/licenses/BSD-3-Clause

Running TESTAR 3 RUNNING TESTAR

Figure 1: TESTAR interface

2 Getting TESTAR
During the handson session we will distribute an image of a virtual machine with Windows
10. There are also possibilities (max. 8) to connect with remote desktop to a server and
run it on a prepared virtual machine there.

TESTAR can be found in the directory C:\testar. You can execute the file:

C:\testar\bin\testar.bat

to start TESTAR.

3 Running TESTAR
When you start TESTAR you will see its interface as in Figure 1. The 4 big buttons at the
top of the tool UI run TESTAR in different modes:

6

Running TESTAR 3 RUNNING TESTAR

1. Spy mode (section 3.2): used to inspect the SUT’ User Interface, for example to
check that your test set up is ready (check next mode).

2. Generate mode (section 3.1): generates and runs automated tests for the established
test set up.

3. Replay mode (section 3.3): used to replay previously run tests.

4. View mode (section 3.4): used to inspect a previously run test at a step-by-step
basis. Contrary to the Replay mode, it will not execute the test during inspection.
But, you will inspect screenshots of the run test. This mode is key when a test turns
out not to be reproducible.

There is an additional Headless mode (section 3.5), which is used under batch opera-
tions without human intervention.

The different tabs are to manipulate most of the settings properties that are all summa-
rized in Appendix D and discussed in Section ??.

You are able to switch between Spy en Generate mode by using the Shift + ← or Shift

+ → keyboard shortcuts4. You will see a flashing message in the screen indicating the
currently running working mode. For example:

Additionally, you can stop TESTAR at any time during Spy, Generate and Replay
modes by pressing the Shift + ↓ keyboard shortcut. This is particularly usefull as a panic
button during test and replay modes, which immediately stops any undesired activity being
performed (e.g. erasing files, printing documents). You can prevent such undesired scenarios
with a correct test set up (see section ??).

3.1 Generate mode
In the generate mode, the TESTAR tool carries out automated testing following the test
cycle depicted in Figure 2. Basically, it derives a set of possible actions for the current state
that the GUI of the SUT is in. Then, it automatically selects and executes an action from
this set which makes the SUT go to a new GUI state. This new state is evaluated with
the available oracles. If no fault is found, again a set of possible actions for the new state
is derived, one action is selected and executed, etc. This continues until a fault has been
found or until a stopping criteria is reached.

With the right test set up all you will need to do is to wait for your tests to finish.
The default behaviour includes random selection of actions and implicit oracles for the

detection of the violation of general-purpose system requirements: like that the SUT should
not crash, the SUT should not find itself in an unresponsive state (freeze) and the UI state
should not contain any widget with suspicious titles like error, problem, exception, etc.

You can interact during the tests at any time, or even stop them through the panic
keyboard shortcut (Shift + ↓). The main working modes that apply for the running tests
are presented next, and you can switch between them through the keyboard shortcuts Shift

+ ← (or Shift + →).

4Check appendix E for additional information

7

Running TESTAR 3 RUNNING TESTAR

Start
SUT

Scan GUI
and initialize
current state

Derive set
of user
actions

Update
current
state

Select
action

Execute
action

Scan GUI
to get new

state

Evaluate
(Oracle)

Stop
SUT

STOP?

MORE?

FAULT?

Get test
metrics

estT *
ar.org

Figure 2: TESTAR testing cycle

• Generate. The default operation mode. Runs tests as specified by the test set up.

• GenerateManual. You will take over TESTAR control and manually perform some
actions during a test. This is particularly interesting if you want to force the test to
move to a concrete part of the UI and/or if you want to move the test out of the
current UI.

• GenerateDebug. Similar to the Generate mode, but you will be able to display the
UI actions (Shift + 1) and colour codes are applied during the test:

green for UI actions that the test can execute,

red for the current UI action being executed, and

(alpha) blue for UI actions that were already executed.

• Slow motion. Hit Shift + Space to (de)activate a delay between the executed UI
actions, which will aid to supervise the test execution of more critical UI parts.

All tests data generated by a TESTAR execution is stored inside the output folder. There
is:

• *.log: tool logs

• *.dbg.log: STDOUT logs

8

Running TESTAR 3 RUNNING TESTAR

• sequences/*: executed tests

• sequences_VERDICT/*: classified tests

• logs/*.log: tests logs

• logs/*_clusters.log: tests clustering logs

• logs/*_curve.log: tests UI exploration curve logs

• logs/*_stats.log: tests statistics logs

• logs/*_testable.log: tests table (ordered executed UI actions) logs

• scrshots/*: tests UI states and actions screenshots

• graphs/*: tests graphing data

• metrics/*.csv: tests metrics

Details about the data and how to use them in in Section 5.

3.2 Spy mode
Spy mode enables the tester to inspect the User Interface of the SUT. This provides useful
information to prepare for your test set up. Once you press the Spy button, your SUT will
start. You can interact with your SUT in the usual way, but the TESTAR Spy will provide
the following capabilities:

1. UI actions: To display the UI actions which will be available during tests, press
keyboard shortcut: Shift + 1 . Figure 3 shows an example for the calculator SUT,
where the green dots mark left click actions. Other types of actions might be displayed
with different visual appearances as described in table 1.

Green dot Left click
Green circle (size small) Right click
Green circle (size medium) Left double click
Green circle (size big) Combined Left click and Right arrow
Green Text Type text (combined click, remove text and type text)
Green Arrow Drag & Drop Operations and Slides
Green Line (at widget bottom) Move mouse pointer to widget

Table 1: Spy mode through Shift + 1 - Actions visual appearances

2. Basic widget information: Shift + 2 enables/disables additional information about
the UI widgets when you hover over them. Figure 4 shows an example for the calculator
SUT. The widget under the mouse pointer is highlighted with a yellow overlay and a
brief overlay panel showing four properties.

3. Extended widget information: Shift + 3 enables/disables extended information
about the UI widget under the mouse pointer. Figure 5 shows an example for the
calculator SUT, where additional widget properties are displayed in an overlay panel.

9

Running TESTAR 3 RUNNING TESTAR

Figure 3: Spy mode: showing UI actions as green dots

Figure 4: Spy mode showing basic widget information.

10

Running TESTAR 3 RUNNING TESTAR

Figure 5: Spy mode showing extended widget information.

11

Running TESTAR 3 RUNNING TESTAR

Figure 6: Spy mode showing the whole widget tree.

4. Graphical widget-tree: Shift + 4 enables/disables the information about the UI
widget-tree through a graphical display5. Figure 6 shows an example for the calculator
SUT, where the widget under mouse pointer is represented by a blue box, its ancestor
widgets in the widget-tree as green boxes in the upper positions and sibling widgets
represented by short grey vertical lines (same height as boxes). The top red box
represents the SUT process and the first green box from top the current displayed
window of the SUT UI. The bottom part provides widgets properties for the green
and blue boxes. This graphical display is particularly interesting to be aware of hidden
widgets in the SUT UI, for example containers (e.g. a panel).

5. Widget-tree hierarchy: Shift + ALT enables/disables the display of ancestor wid-
gets in the widget-tree of the widget that is hovered over. Figure 7 shows an example
for the Powerpoint SUT, where different overlay colored rectangles are used to mark
the corresponding ancestors. A legend of the used colors is provided, from top to
bottom the first and last ancestors. You will also find detailed ancestors information
at the standard output (e.g. console), as shown in the left part of the Figure. This
can be complemented with the graphical widget-tree display from previous point.

6. Data input values: ALT can be used to define some input values for the widget
under mouse pointer. Figure 8 shows an example, where a popup dialog allows to
establish the type of input values that should be used for the corresponding widget.
The popup list displayed can be customised with as many types of input values as
required for the SUT. To do so, edit the file input_values.xml6 and append as

5Rows denote depth levels in the widget-tree hierarchy and columns widget siblings
6This file can be found at TESTAR’s root installation folder

12

Running TESTAR 3 RUNNING TESTAR

Figure 7: Spy mode showing the widget-tree hierarchy

Figure 8: Spy mode, defining input values through ALT

13

Running TESTAR 3 RUNNING TESTAR

many input values as you require for your SUT. In listing 1 you can find an example.

Listing 1: input_values.xml
<?xml version="1.0"?>
<TESTAR_inputvalues version="1.0.20170322">

<data_types> <!-- note: negative data types are reserved -->
<!-- <data type="1" desc="data_type_description" example="example_value"/> -->

</data_types>
<input_values> <!-- provide a value or list of values for each declared data

type -->
<!-- <input type="1" value="foo_value"/>
<input type="1" value="boo_value"/> -->

</input_values>
</TESTAR_inputvalues>

7. UI actions filters: CAPS_LOCK enables/disables a feature that enables you to filter
actions directly in Spy mode. This comes in very handy when setting up your tests.
Once this feature is enabled, you can just hover over the widget and hit Ctrl to filter
all actions on this widget from being selected during testing. You can hit Shift +
Ctrl to undo the filtering. You can also filter several actions at once by a dragging a
square around the widgets while pressing Ctrl . Filtered actions will be stored in the
file protocol_filter.xml that you can find in TESTAR’s root installation folder.

3.3 Replay mode
TESTAR will ask you for the test sequence (file) to replay. Replaying a saved test implies to
run your SUT and execute the UI actions in the very same order and with the same delays
that were used in the run tests. You can switch to a ReplayDebug working mode (Shift +
→), which displays the current executed UI action (red color). Additionally, you can slow
down the replay through the Shift + Space keyboard shortcut.

However, your tests might become not reproducible if the SUT behaviour is not stable
for the same tests. In that case, you can look into the next mode (View), which has the
main difference of not re-executing the tests, but displaying the list of states and actions
that conform your saved test sequence.

Yet, the SUT might be starting from a different state. Did you considered delet-
ing/restoring SUT specific settings files in your test set up?

3.4 View mode
TESTAR will ask you for the test sequence (file) to inspect as a list of screenshots. A
tin reproduction toolbar will allow you to navigate through the test, moving one UI action
forward or backward, or jumping to the beginning or end of the test. The current displayed
screenshot is the UI state in the test, and the UI action that was executed in that state is
remarked in the screenshot.

14

Running TESTAR 3 RUNNING TESTAR

3.5 Headless mode
TESTAR can be executed without its user interface, which enables to automate tests execu-
tions from scripts. To do so you will need to edit the file test.settings and set the property
ShowVisualSettingsDialogOnStartup to the value false. Whether you want to see TESTAR
user interface again then switch the value to true, for example to adjusting the different
settings for your tests through the user interface (or you can simply edit the properties’
values directly in the test.settings file). Please, make sure that the property Mode is set to
the value Generate, which will be used for running your tests.

Alternatively, you can simply execute the batchrun.bat batch script7. A sample execution
would be: batchrun.bat 10, where tests will be repeated 10 times. For example, if your test
set up is defined to run 3 test sequences of 1000 UI actions each, then your batch execution
would repeat the 3 test sequences, of 1000 UI actions, 10 times (30 tests with 30000 UI
actions in total).

Additionally, you can bypass some properties of the test.settings through the main run
script run.bat, which accepts several arguments:

• -Dheadless=true/false. Run with (false) or without (true) the user interface.

• -DTG=random/qlearning/qlearning+/maxcoverage/prolog/evolutionary. Sets
the UI action selector (algorithm) to use during tests.

• -DSL=positive_number. Sets the test sequences length by the number of UI ac-
tions.

• -DGRA=true/false. Enables/disables the graph resuming feature for future tests
(resumes from a previous test graph).

• -DF2SL=true/false. Continues (true) testing in the presence of a SUT FAIL.

• -DTT=positive_number. For the action selector algorithms, sets the number of
UI typing actions, with different texts, that must be performed over the same state’
widget to treat the action as executed.

• -DSST=0.0 .. 1.0. It activates the widget-tree’s build cache, which will speed up
the tests. Lower values will get better performance, but the widget-trees can easily
get out of sync with the SUT user interface. A recommended value is around 0.95.
It is also suggested to use this option with caution and to not use it at all for safe
testing.

• -DUT=true/false. Activates (true) unattended tests, which will disable all the user
events for TESTAR. It will guarantee a more reliable tests due the event handling will
not interfere with the tests. However, it will also disable key keyboard shortcuts like
the panic button.

7Under Windows environments. You might set a similar script for other environments like Linux

15

Test protocol 4 TEST PROTOCOL

4 Test protocol
TESTAR provides a customizable test protocol as a Java source file8, which is automatically
compiled by the tool by user request (Save and Compile button). The builtin editor of the
Java protocol contains three components: 1) top: the source code of the test protocol, 2)
middle: a button “Save and Compile”, which saves and compiles the protocol and 3) bottom:
the Error Console, which informs you about potential errors during compilation.

The protocol is depicted in figure 9, which contains a set of Java methods9. Find details
about them in the next subsections. Their signature is presented in listing 2.

Listing 2: The Java Methods that can be customized
// initial setup before starting SUT test
void initialize(Settings settings)

// determines whether to continue SUT testing (additional runs)
boolean moreSequences()

// any action to be taken during SUT start
SUT startSystem()

// clean-up tasks for new test runs
void beginSequence()

// step-by-step STATE of the SUT, with an attached ORACLE
State getState(SUT system)

// determines the STATE ORACLE verdict
Verdict getVerdict(State state)

// determines the stopping criteria
boolean moreActions(State state)

// the set of available ACTIONs from a SUT’s STATE
Set<Action> deriveActions(SUT system, State state)

// which ACTION should be PERFORMED next (i.e. random, Search-Based)
Action selectAction(State state, Set<Action> actions)

// runs an ACTION from a SUT STATE, with return code (success?)
boolean executeAction(SUT system, State state, Action action)

// any action to be taken during SUT stop
void stopSystem(SUT sut)

// finishing tasks for an ending test run
void finishSequence(File recordedSequence)

8To edit it refer to section ??.
9There is no Java method for the FAULT checker in the figure

16

Test protocol 4 TEST PROTOCOL

Figure 9: Test protocol

17

Test protocol 4 TEST PROTOCOL

4.1 initialize method
Signature of the method: void initialize(Settings settings).

Grants the opportunity to perform any initialization tasks before the tests are started.
You may want to scan the properties of your test.settings to achieve particular goals.

4.2 moreSequences method
Signature of the method: boolean moreSequences().

Perhaps you want to override the default checker that has been defined by your test set
up and introduce a dynamic decision based on particular criteria. For example, you could
have instrumented your SUT to measure the code coverage achieved by the tests. Then,
you can continue with extra test sequences until a succesful coverage threshold is satisfied.

4.3 startSystem method
Signature of the method: SUT startSystem().

Perform any tasks you require for your tests around the SUT start process. For example,
in web applications it is common the necessity of performing a user login action. Lets assume
that your web application displays a login page right after starting it. Then, to automate a
user login the method can be populated with the next code:

SUT sut = super.startSystem();

new CompoundAction.Builder()
.add(new Type("my user"),0.1) //assume keyboard focus is on the user field
.add(new KeyDown(KBKeys.VK_TAB),0.5) //assume next focusable field is pass
.add(new Type("my user pass"),0.1)
.add(new KeyDown(KBKeys.VK_ENTER),0.5).build() //assume login is performed by ENTER
.run(sut, null, 0.1);

return sut;

You might need to adjust the combination of user events (e.g. left clicks on text boxes,
pressing keys, typing texts) to achieve your desired goal. You might also need to scan the UI
of your SUT (section 4.5) for a better decision on the user events to perform in the proper
UI widgets.

Furthermore, you can activate your SUT in this method by its 1. UI window title or its
2. process name:

1. return super.startSystem("SUT_WINDOW_TITLE:my SUT window title");

2. return super.startSystem("SUT_PROCESS_NAME:my SUT process name");

4.4 beginSequence method
Signature of the method: void beginSequence().

You can perform any tasks you require for the next test sequence to work as you expect.
For example, do you need to set your database in a concrete state?

It is also important for the reproducibility of your recorded tests (check section 3.3) to
put your SUT in a concrete starting state. The large majority of SUTs remembers specific

18

Test protocol 4 TEST PROTOCOL

settings or saves the position of its windows as they have been during the last session. If
you do not restore the SUT’s settings to their defaults, a previously recorded test sequence
might not be replayed properly. For example, because the SUT starts in a different UI state
(e.g. the UI starts with the last edited document).

4.5 getState method
Signature of the method: State getState(SUT system).

Here, the widget-tree (state) of your current SUT UI is built. TESTAR queries the UI
through assistive technologies, for example the underlying Operating System’s Accessibility
API, which has the capability to detect and expose UI widgets and their properties (e.g.
role, title, shape).

Are you interested in a particular state of your UI? You have the chance to scan the
current widget-tree of your SUT and perform any tasks to enhance your test. For example,
you might alter your database if the UI displays a table and you are not satisfied with a
table containing few rows. For a good test you could expect the table to contain hundreds
of rows (or more) and so, you can populate your database with additional data to retrieve
a bigger table.

4.6 getVerdict method
Signature of the method: Verdict getVerdict(State state).

Besides the default oracles (e.g. crashes, freezes and suspicious titles) provided by TES-
TAR, you can codify more advanced oracles through incremental build of SUT requirements.
For example, the next code listing codifies an oracle to check for readability of your UI where
all the texts should have a minimum font size to be legible:

Verdict verdict = super.getVerdict(state);
// MORE SOPHISTICATED ORACLES CAN BE PROGRAMMED HERE (the sky is the limit ;-)
Role role; Shape shape;
for(Widget w : state){ // iterate over all the current UI widgets

role = w.get(Tags.Role, null); shape = w.get(Tags.Shape, null);
verdict = verdict.join(getSmallTextVerdict(state, w, role, shape));

}
return verdict;
--
private Verdict getSmallTextVerdict(State state, Widget w, Role role, Shape shape){

final int MINIMUM_FONT_SIZE = 8; // px
if (role != null && role.equals(NativeLinker.getNativeRole("UIAText")) &&

shape != null && shape.height() < MINIMUM_FONT_SIZE)
return new Verdict(Verdict.SEVERITY_WARNING, "Not all texts have a size >=

" + MINIMUM_FONT_SIZE + "px", new ShapeVisualizer(BluePen,
w.get(Tags.Shape), "Too small text", 0.5, 0.5));

else return Verdict.OK;
}

4.7 moreActions method
Signature of the method: boolean moreActions(State state).

19

Test protocol 4 TEST PROTOCOL

You can override your test set up and decide on whether to continue the test sequence.
You might want to code your goal across other methods of the protocol, for example to
know about the UI states that the test did traverse. Are you interested to test the state X?
Was the state X tested?

4.8 deriveActions method
Signature of the method: Set<Action> deriveActions(SUT system, State state).

This is a critical method of the protocol where you can decide on the feasible UI actions
for your tests. Next code listing builds left clicks, typing random10 texts and sliding scrol-
lable components over widgets that are enabled, not blocked by other widgets (e.g. in top),
white-listed, not black-listed and which are clickable, type-able and slide-able.

Set<Action> actions = super.deriveActions(system,state);

StdActionCompiler ac = new AnnotatingActionCompiler(); Drag[] drags;
for(Widget w : state){ // iterate through all widgets

// enabled and non-blocked widgets
if (w.get(Enabled, true) && !w.get(Blocked, false)) continue;
// taboo widgets (UI actions filters from the Spy mode section)
if (blackListed(w)) continue;
// left clicks
if (whiteListed(w) || isClickable(w)) actions.add(ac.leftClickAt(w));
// type into text boxes
if (whiteListed(w) || isTypeable(w)) actions.add(ac.clickTypeInto(w,

this.getRandomText(w)));
if ((drags = w.scrollDrags(SCROLL_ARROW_SIZE,SCROLL_THICK)) != null){

for (Drag drag : drags){ // sliding actions
actions.add(ac.dragFromTo(

new AbsolutePosition(Point.from(drag.getFromX(),drag.getFromY())),
new AbsolutePosition(Point.from(drag.getToX(),drag.getToY()))

));
}

}
}

return actions;

You might want to customise your own UI actions, for example with specific texts to
type into text boxes, right clicks, drag and drops, mouse gestures, etc.

4.9 selectAction method
Signature of the method: Action selectAction(State state, Set<Action> actions).

The default behaviour is to select a UI action from the list based on the algorithm that
has been defined by the test set up (e.g. random, qlearning). However, you can interfere in
the next UI action to be executed by scripting your own logic. You could even build/select
an action outside the list. For example, did you identify a UI state which is not interesting

10From feasible input values as defined by the input_values.xml specification (check section 3.2)

20

Test protocol 4 TEST PROTOCOL

at all for your test and you prefer to execute a concrete action (e.g. press ESC key)? Then,
simply build and select the ESC action when you are at that particular UI state.

4.10 executeAction method
Signature of the method: boolean executeAction(SUT system, State state, Action action).

Here, the selected UI action will be executed into your SUT. You might want to perform
additional tasks (e.g. check a database consistency after the action) or even check the status
of action execution (was it successful?).

4.11 stopSystem method
Signature of the method: void stopSystem(SUT sut).

Perform any tasks that suit during the SUT shutdown at the test sequence end. For
example, check that your SUT has indeed shutdown correctly, clean any files that were
created during the test or clean your database to a default state.

4.12 finishSequence method
Signature of the method: void finishSequence(File recordedSequence).

Place here the code you need to follow up the test sequence finalisation. For example,
you could start your own reporting scripts for the executed test.

21

Test reports 5 TEST REPORTS

5 Test reports
All tests data generated by a TESTAR execution is stored inside the output folder:

• *.log: tool logs

• *.dbg.log: STDOUT logs

• sequences/*: executed tests

• sequences_VERDICT/*: classified tests

• logs/*.log: tests logs

• logs/*_clusters.log: tests clustering logs

• logs/*_curve.log: tests UI exploration curve logs

• logs/*_stats.log: tests statistics logs

• logs/*_testable.log: tests table (ordered executed UI actions) logs

• scrshots/*: tests UI states and actions screenshots

• graphs/*: tests graphing data

• metrics/*.csv: tests metrics

Check the next sections to understand the data, and how to analyse it (section 5.7).

5.1 Tool logs
Every time you start tests in TESTAR you should see a time stamped log file (.log) and,
if powershell utility was successfully used by the run.bat script, you should also see a time
stamped debug log file (.dbg.log). The former, will indicate the timestamp of TESTAR
start, the used settings and the working operational mode. The latter, will store all the
STDOUT during tests execution. Simplified and commented samples are presented in the
next listings11:

05.July.2017 13:02:59 TESTAR v1.3 is running with the next settings:
-- settings start ... --
... // list of pairs <property,value>
-- ... settings end --
’Generate’ mode active. // working operational mode being used for the tests

>"JVM_HOME\bin\java.exe" -ea -server -Xmx1g -jar testar.jar // command used to run
Test settings is <./settings/desktop_wincalc/test.settings> // settings being used
// input_values.xml contents
// libraries loading
<Q-Learning> test generator enabled (parameters) // algorithm
[START] Running processes (12): // a list with process PID, HANDLE and name
SUT is running after <0> ms ... waiting UI to be accessible

11Using default logging (check LogLevel in section D)

22

Test reports 5 TEST REPORTS

SUT is running after <509> ms ... waiting UI to be accessible
SUT accessible after <612> ms
// performance metrics per action (as many lines as the test sequence length)
Finish sequence
[END] Running processes (12): // a list with process PID, HANDLE and name
currentseq: .\output\temp\tmpsequence // temporal Java serialization of the test
// test metrics
// other tool messages

5.2 Tests sequences
All the tests you have executed will be serialized as Java objects into the sequences/ folder.
Additionally, they are classified and copied into several sequences_VERDICT/ folders,
as many as different verdicts that were gathered on finished tests. For example, you
might find a sequences_OK folder if almost one of the test sequences did PASS and a
sequences_suspicioustitle folder if almost one of the test sequences contained a suspicious
title in the UI (e.g. An unexpected error ...).

You will be able to use these serialized files to Replay (section 3.3) and View (section
3.4) your tests.

5.3 Tests logs
Test logs contains detailed information about your tests. For each test sequence you will
find the next set of logs:

• Log (logs/sequence*.log). A detailed list of ordered executed test UI actions. A
simplified and commented sample is provided in listing 3.

• Clusters (logs/*_clusters.log). States and actions clusters. A simplified and com-
mented sample is presented in listing 4.

• UI exploration curve (logs/*_curve.log). Metrics per action. A simplified and
commented sample is displayed in listing 5.

• Statistics (logs/*_stats.log). Summary statistics. A simplified and commented sam-
ple12 is illustrated in listing 6.

• Actions table (logs/*_testable.log). A detailed list of ordered test UI actions. A
simplified and commented sample is shown in listing 7.

Listing 3: Sample test log
05.July.2017 13:03:00 Starting SUT ... // timestamp of the test start
Starting sequence 1 (output as: sequence1) // number of test sequence and folder

// repeated for each test sequence UI action

// action and state identifiers

12Data was obtained by a new test resuming from the test at listing 5

23

Test reports 5 TEST REPORTS

Executed [action_number]: action = ACs3xabg802043572381 (AAs3xabg802043572381)
@state = SC1160ylw3862984133231 (SR4ygmlp3761868872537)

SUT_KB = 12800, SUT_ms = 16 x 0 x 13.68% // SUT RAM and CPU (user x system) usage
ROLE = LeftClickAt // action ROLE
TARGET = // action’s UI target widget

// target widget identifiers
WIDGET = WC1pno85v21350358828, WR1h6ibpb92248851252, WT1m8m97k131880447283,

WPpcrzut1d619024393
ROLE = UIAButton // widget ROLE
TITLE = Porcentaje // widget TITLE
SHAPE = Rect [x:684.0 y:454.0 w:34.0 h:27.0] // widget SHAPE
CHILDREN = 0 // widget’s children
PATH = [0, 0, 30] // widget path in the widget-tree

DESCRIPTION = Left Click at ’Porcentaje’ // action DESCRIPTION
TEXT = Compound Action = // action as TEXT

Move mouse to (701.0, 467.5). // screen coordinates
Press Mouse Button BUTTON1 // left button
Release Mouse Button BUTTON1

// test finish messages
Shutting down the SUT...
Sequence 1 finished.
Copying generated sequence ("sequence1") to output directory...
Copying classified sequence ("sequence1") to sequences_ok folder...
TESTAR stopped execution at 05.July.2017 13:03:10
Test duration was 10 seconds or 0 minutes or 0 hours

Listing 4: Sample test clusters
STATES CLUSTERS: // clustering based on Abstract (ROLE) and Concrete identifiers
[state_cluster_number] SR4ygmlp3761868872537 contains:

(1) SC1160ylw3862984133231 (2) SCe23kmz3881464978174 (3) SC1vq8pzz388129504854
(4) SC163rqiq3873367995483 (5) SCnsin3r3893728607306 (6)
SCf4pb57387250135947 (7) SC11u5yt13871143516693 (8) SCfvnoc3388574132644

(9) SCx32qhb387560692598 (10) SC82s3jw3881175443024

ACTIONS CLUSTERS: // clustering based on Abstract and Concrete identifiers
[action_cluster_number] AAdqo8ce7f949894849 contains:

(1) ACdqo8ce7f949894849

Listing 5: Sample test UI exploration curve
________________UNIQUE ________ABSTRACT ___TOTAL

#, states, actions, states, actions, unq, abs, unx, maxpath, minCvg, maxCvg, KCVG
// # = action order, unq = UNIQUE/concrete, abs = ABSTRACT, unx = unexplored actions

0, 1, 0, 1, 0, 1, 1, 0, 2, 0%, 0%, 0@0
1, 1, 1, 1, 1, 2, 2, 32, 2, 3%, 3%, 3@33
2, 1, 2, 1, 2, 3, 3, 31, 2, 6%, 6%, 6@33

...
20, 8, 20, 1, 20, 28, 21, 244, 6, 3%, 18%, 7@26a
...

24

Test reports 5 TEST REPORTS

40, 16, 38, 4, 37, 54, 41, 453, 10, 2%, 99%, 7@49a
...
50, 18, 48, 4, 47, 66, 51, 569, 12, 2%, 99%, 7@61a

// KCVG = coverage @ total derived actions (a = x10, b = x100, c= x1000, ...)

Listing 6: Sample test statistics
// unexplored state = there are pending UI actions (derived) to be executed
total states, unique states, abstract states, unexplored states

134, 44, 9, 43
// unexplored action = not executed (check -DTT parameter - headless working mode).
total actions, unique actions, abstract actions, unexplored actions

100, 98, 97, 1413
total unique, total abstract, maxpath, minCvg, maxCvg, VERDICT

142, 106, 19, 2.38%, 99.90%, PASS

=== GRAPH RESUMING ===
Known states: 18 // states discovered from previous test sequence
Revisited states: 12 // revisited states from previous test sequence
New states: 26 // new states not discovered at previous test sequence

=== TEST GENERATOR ===
Name: random

25

Test reports 5 TEST REPORTS

Li
st
in
g
7:

Sa
m
pl
e
te
st

ac
ti
on

s
ta
bl
e

AC
TI

ON
_T

YP
ES

:
T

=
Cl

ic
kT

yp
eI

nt
o,

RC
=

Ri
gh

tC
li

ck
At

,
LC

=
Le

ft
Cl

ic
kA

t
//

co
de

s
fo

r
ac

ti
on

ty
pe

s
in

th
e

te
st

se
t

up
//

ta
bl

e
wi

ll
co

nt
ai

n
as

ma
ny

li
ne

s
as

UI
ac

ti
on

s
in

th
e

te
st

se
qu

en
ce

#,
RA

M(
KB

),
CP

Us
er

(m
s)

,
CP

Us
ys

(m
s)

,
CP

U(
%)

,
FR

OM
,

x,
TO

,
x,

//
ta

bl
e

he
ad

er
AC

TI
ON

,
x,

AC
TI

ON
_T

YP
E,

(
(

WI
DG

ET
,

RO
LE

,
TI

TL
E

)
[

pa
ra

me
te

r*
]

)+
//

#
=

UI
ac

ti
on

or
de

r
1,

12
92

0,
0,

15
,

10
.3

4,
SC

gk
tq

w3
3c

43
86

84
14

31
7,

7,
SC

gk
tq

w3
3c

43
86

84
14

31
7,

7,
AC

xc
9m

o1
7f

37
72

44
43

4,
1,

LC
,

(
WC

ph
m7

bz
18

12
24

38
92

93
,

UI
AB

ut
to

n,
0

)
[

]
//

FR
OM

=
st

at
e

id
en

ti
fi

er
at

wh
ic

h
th

e
UI

ac
ti

on
wa

s
ex

ec
ut

ed
2,

12
95

6,
32

,
0,

12
.1

7,
SC

gk
tq

w3
3c

43
86

84
14

31
7,

7,
SC

gk
tq

w3
3c

43
86

84
14

31
7,

7
AC

1t
ko

7l
97

f6
15

08
86

00
,

1,
LC

,
(

WC
1n

2s
go

72
86

83
81

96
44

,
UI

AB
ut

to
n,

Re
cu

pe
ra

r
me

mo
ri

a
)

[
]

//
TO

=
st

at
e

id
en

ti
fi

er
af

te
r

ex
ec

ut
in

g
th

e
UI

ac
ti

on
3,

12
97

6,
0,

31
,

14
.6

2,
SC

gk
tq

w3
3c

43
86

84
14

31
7,

7,
SC

13
mb

0o
33

c6
12

76
51

02
6,

3,
AC

5a
v6

iy
7f

10
81

95
76

24
,

1,
LC

(
WC

83
6f

kw
18

52
12

59
29

8,
UI

AB
ut

to
n,

5
)

[
]

//
x

=
nu

mb
er

of
ti

me
s

ea
ch

st
at

e/
ac

ti
on

wa
s

vi
si

te
d/

ex
ec

ut
ed

4,
12

97
6,

0,
32

,
12

.8
0,

SC
13

mb
0o

33
c6

12
76

51
02

6,
3,

SC
13

mb
0o

33
c6

12
76

51
02

6,
3,

AC
6v

kv
5z

7f
11

53
51

96
84

,
1,

LC
(

WC
lq

ch
m5

1d
96

10
68

52
5,

UI
AB

ut
to

n,
Re

st
ar

)
[

]
//

LC
=

Le
ft

Cl
ic

k
5,

12
97

6,
46

,
15

,
17

.5
8,

SC
13

mb
0o

33
c6

12
76

51
02

6,
3,

SC
13

mb
0o

33
c6

12
76

51
02

6,
3,

AC
q0

wp
vs

7f
24

33
93

15
93

,
1,

LC
(

WC
1w

3r
2c

r2
22

54
64

37
19

2,
UI

AB
ut

to
n,

Mu
lt

ip
li

ca
r

)
[

]
..

.
46

,
14

55
2,

15
,

93
,

29
.2

7,
SC

g4
0w

on
b4

e3
94

48
25

29
5,

9,
SC

g4
0w

on
b4

e3
94

48
25

29
5,

9,
AC

nf
8i

5t
7f

36
38

26
59

22
,

1,
LC

(
WC

pq
oa

ut
20

29
87

73
01

15
,

UI
AR

ad
io

Bu
tt

on
,

By
te

)
[

]
//

WC
ph

m8
xo

18
28

27
66

51
60

is
th

e
ta

rg
et

wi
dg

et
of

th
e

LC
ac

ti
on

47
,

14
55

2,
47

,
47

,
22

.1
7,

SC
g4

0w
on

b4
e3

94
48

25
29

5,
9,

SC
g4

0w
on

b4
e3

94
48

25
29

5,
9,

AC
u7

qc
7g

7f
73

47
29

27
3,

1,
LC

(
WC

ph
m8

xo
18

28
27

66
51

60
,

UI
AB

ut
to

n,
0

)
[

]
//

UI
AB

ut
to

n
is

th
e

ro
le

of
th

e
wi

dg
et

at
wh

ic
h

th
e

ac
ti

on
wa

s
pe

rf
or

me
d

48
,

14
55

2,
47

,
47

,
23

.3
3,

SC
g4

0w
on

b4
e3

94
48

25
29

5,
9,

SC
g4

0w
on

b4
e3

94
48

25
29

5,
9,

AC
xp

ms
rr

7f
21

67
37

47
28

,
1,

LC
(

WC
ka

6y
db

28
25

37
39

05
50

,
UI

AB
ut

to
n,

Al
ma

ce
na

r
me

mo
ri

a
)

[
]

//
"B

or
ra

r
me

mo
ri

a"
is

th
e

TI
TL

E
of

th
e

wi
dg

et
at

wh
ic

h
th

e
ac

ti
on

wa
s

pe
rf

or
me

d
49

,
14

55
2,

15
,

78
,

25
.2

0,
SC

g4
0w

on
b4

e3
94

48
25

29
5,

9,
SC

g4
0w

on
b4

e3
94

48
25

29
5,

9,
AC

1o
em

sk
37

f2
94

32
77

77
6,

1,
LC

(
WC

12
nb

xu
l2

53
69

79
24

01
1,

UI
AB

ut
to

n,
Bo

rr
ar

me
mo

ri
a

)
[

]
//

[
]

=
no

ac
ti

on
pa

ra
me

te
rs

.
Ty

pi
ng

ac
ti

on
s

wo
ul

d
di

sp
la

y
th

e
wr

ot
e

te
xt

be
tw

ee
n

th
e

br
ac

ke
ts

50
,

14
57

6,
16

,
78

,
23

.9
2,

SC
g4

0w
on

b4
e3

94
48

25
29

5,
9,

SC
g4

0w
on

b4
e3

94
48

25
29

5,
9,

AC
as

2s
x9

7f
42

57
13

89
00

,
1,

LC
(

WC
1c

fv
19

v2
21

35
70

16
47

,
UI

AR
ad

io
Bu

tt
on

,
Bi

na
ri

o
)

[
]

26

Test reports 5 TEST REPORTS

5.4 Tests UI screenshots
You will find at scrshots/sequence*/*.png screenshots of the SUT UI for each state visited
in the test and screenshots of each executed UI action. The picture file name for states is
its identifier and for actions it is in the format: stateIdentifier_actionIdentifier.png.

5.5 Tests graphs
TESTAR represents tests as directed pseudo graphs, which contain loops (an action that
makes no reaction in the UI), multiple edges between vertexes (two different actions from
the same state make the UI to change to the same state) and multiple vertex targets for
edges (the UI could react differently to the same action depending on its internal temporal
behaviour).

Graphing data is represented in XML (graph_timestamp.xml) as a set of nodes and
links that conform your test, as shown in the commented and simplified sample of listing
8. Nodes represent UI states and links UI actions between states. Test graphs are provided
with different perspectives (minimal, tiny, screenshots), which can be found at graphs/se-
quence*/* : Graphs are stored by default with .dot13 extensions. To help in their inspection
it is recommended to use the alternative .svg14 format, which can be visualized through a
compatible viewer (e.g. a web browser). Verdicts are also included (PASS as green circle,
FAIL as red circle or WARNING in orange like for example a suspicious widget title).

Listing 8: Sample graph XML
<?xml version="1.0"?>
<TESTAR_GRAPH version="1.0.20160331"> // a graph consisting of a set of nodes

(states) and links (actions)
<graph_states> // set of UI states (as many as test discovered)

// id = concrete identifier, aid = abstract identifier,
// visited = number of times the test visited the state,
// wcount = widgets count in the UI state,
// widgets = the list of widgets and their number of executed actions as pairs of

identifier=number
// unexecuted = list of derived and unexecuted UI state’ actions (abstract

identifiers)
<state id="SC1160ylw3862984133231" aid="SR4ygmlp3761868872537" visited="9"

wcount="45" widgets="{WC13kcegf20254564757=1, WC1rwj1ac1e2906031608=0, ...,
WCt96dae181894528334=0, WC1c5p1an1f2886007819=0}"
unexecuted="[AArmtj5u7f655493483,...,AA19wlaph80920180123]"/>

</graph_states>
<graph_actions> // set of UI actions (as many as test executed)

// order = actions execution order, id = concrete identifier, aid = abstract
identifier,

// visited = number of times the test executed the action,
// from = state at which the action was executed, to = the state after the action

execution
<action order="1" id="ACaiz3i0804113271233" aid="AAaiz3i0804113271233"

visited="1" from="SC1160ylw3862984133231" to="SC1160ylw3862984133231"/>

13Graph description language: http://www.graphviz.org/content/dot-language
14Scalable Vector Graphics. You might need to convert the graphs from .dot to .svg through the of-

fline_graph_conversion.bat script, which requires the graphviz tool properly installed (check section ??).

27

http://www.graphviz.org/content/dot-language

Test reports 5 TEST REPORTS

...
<action order="25" id="AC1i96cv7e1847397662" aid="AA1i96cv7e1847397662"

visited="1" from="SCd6aozo389317110099" to="SC1160ylw3862984133231"/>
</graph_actions>

</TESTAR_GRAPH>

Next, the different graphs that can be found are described:

• Minimal (graph_timestamp_minimal.*). Figure 10 displays a sample graph. It
provides an overview of the test extent, without populating too much information. UI
states are illustrated by rectangles with a number, which counts the number of times
the test traversed through that particular state. UI actions are shown as links between
nodes with a number, which counts for the number of times that particular action was
executed in that state. Colors denote a ratio of repetition to help for a direct visual
marking of less/more exercised UI. Additionally, pink filled circles and links represent
UI actions that were derived in the corresponding state but that were never executed.
The number in the pink links account for the number of unexecuted actions. Nodes
with thicker outline represent the ones in the longest path.

• Minimal abstract (graph_timestamp_minimal_abstract.*). Figure 11 displays a
sample graph. As an attempt for the minimal graphs scalability, an abstraction of
the graphs is used to clustering sets of related states on the one hand, and sets of
related actions on the other hand. Also, the links include the actions order in the test
(between brackets).

• Tiny (graph_timestamp_tiny.*). Figure 13 displays a sample graph. Tiny version is
an enhancement of the minimal version appending states identifiers inside the nodes
and actions identifiers15 inside the links. Moreover, actions order in the test is indi-
cated by the numbers between brackets.

• Tiny abstract (graph_timestamp_tiny_abstract.*). Figure 12 displays a sample
graph. This is the equivalent abstract tiny version as explained for the minimal ver-
sions.

• Screenshots (graph_timestamp_scrshoted.*). Figure 14 displays a sample graph.
This is the most useful for analyzing your SUT behaviour, enhances previous versions
with states and actions screenshots making it ready as test documentation. For the
latter, the screenshot applies whenever the action is performed over a widget on the
UI (e.g. left click on a button; the screenshot would be that particular button).

• Screenshots abstract (graph_timestamp_scrshoted_abstract.*). Figure 15 dis-
plays a sample graph. The equivalent abstract version as explained for the minimal
versions.

• Resumed versions. All previous versions are also available for resumed graphs, those
which are the product of resuming from a previous test (concretely, from a previous
XML graph). The corresponding16 test resumed versions samples are displayed at
figures 16, 17, 19, 18, 20 and 21. Three styles for nodes’ outline are applied to indicate:

15An identifier that starts with G_* denotes a group of similar actions (e.g. two different typing actions
at the same widget) to prevent massification of links

16Screenshots are only displayed for the last test sequence

28

Test reports 5 TEST REPORTS

Figure 10: Minimal graph

a) dotted: states traversed by a previous test, b) corners diagonals: a) states which
have been revisited by the test and c) straight: new discovered UI states. Similarly,
links also apply these outlines with the exception of case b), for which a tapered style
is used instead. Additionally, thicker outlined links indicate multi-target actions, those
that reach different states due to varying SUT behaviour.

29

Test reports 5 TEST REPORTS

F
ig
ur
e
11
:
M
in
im

al
ab

st
ra
ct

gr
ap

h

F
ig
ur
e
12
:
T
in
y
ab

st
ra
ct

gr
ap

h

30

Test reports 5 TEST REPORTS

F
ig
ur
e
13
:
T
in
y
gr
ap

h

31

Test reports 5 TEST REPORTS

Figure 14: Screenshots graph
32

Test reports 5 TEST REPORTS

Figure 15: Screenshots abstract graph

33

Test reports 5 TEST REPORTS

Figure 16: Resumed minimal graph

34

Test reports 5 TEST REPORTS

F
ig
ur
e
17
:
R
es
um

ed
m
in
im

al
ab

st
ra
ct

gr
ap

h

F
ig
ur
e
18
:
R
es
um

ed
ti
ny

ab
st
ra
ct

gr
ap

h

35

Test reports 5 TEST REPORTS

F
ig
ur
e
19
:
R
es
um

ed
ti
ny

gr
ap

h

36

Test reports 5 TEST REPORTS

F
ig
ur
e
20
:
R
es
um

ed
sc
re
en
sh
ot
s
gr
ap

h

37

Test reports 5 TEST REPORTS

F
ig
ur
e
21
:
R
es
um

ed
sc
re
en
sh
ot
s
ab

st
ra
ct

gr
ap

h

38

Test reports 5 TEST REPORTS

5.6 Tests metrics
Indicators about a test performance are provided through three sources of informaiton:

• CSV metrics (output/metrics/*.csv). An example is provided in tables 2, 3 and 4.
Next, it is detailed how to interpret these metrics:

– Verdict: did the test PASS or FAIL?

– FAILS: if ForceToSequenceLength property was set to true (check section D) it
displays the number of times the SUT failed until the sequence length is reached.

– minCvg/maxCvg: for all the UI states visited by the test, displays the mini-
mum/maximum UI actions17 coverage18 achieved.

– maxpath: the test’ longest executed UI path19, as the number of graph states.

– graph-states: the concrete UI states number visited by the test.

– abstract-states: the abstract UI states number visited by the test.

– graph-actions: the sum of all derived20 UI actions for all the UI states visited by
the test.

– test-actions: the number of test executed UI actions.

– SUTRAM: the peak SUT used RAM during the last test sequence.

– SUTCPU: the peak SUT used CPU during the last test sequence.

– TestRAM: the peak RAM used by TESTAR during the last test sequence.

– TestCPU: the peak21 delay between UI actions during the last test sequence.

– fitness: a combination of other metrics to roughly estimate how good22 the last
test sequence was.

Verdict FAILS minCvg(%) maxCvg(%) maxpath
PASS 0 3.23 33.33 8

Table 2: Example CSV metrics 1/3

graph-states abstract-states graph-actions test-actions
13 2 24 25

Table 3: Example CSV metrics 2/3

• STDOUT metrics (output/*.dbg.log). More indicators can be found at STDOUT
(or *.dbg.log files if powershell was accessible). A simplified and commented sample
is displayed in listing 9.

17As specified by the test set up
18An UI action was covered if the test did execute it almost once
19How far in the UI did the test go
20As specified by the test set up
21Note: the first UI action will at minimum take as long as the SUT startup time
220.0 is best, 1.0 is worst

39

Test reports 5 TEST REPORTS

SUTRAM(KB) SUTCPU(%) TestRAM(MB) TestCPU(s) fitness
220.0 51.06 80.5 0.247 6.500778E-4

Table 4: Example CSV metrics 3/3

Listing 9: Sample STDOUT metrics
// live test metrics at STDOUT (one line per executed UI action)
S[1=1]-A[1] < 0@ 0 KCVG>... SR = 12640 KB / SC = 0.00% ... TC: 1.927

s / TR: 123.0 MB ... L/S/T: 3/2/0
S[1=1]-A[2] < 3@ 31 KCVG>... SR = 12772 KB / SC = 0.00% ... TC: 0.205

s / TR: 123.0 MB ... L/S/T: 1/4/1
...
S[1=1] // test sequence 1 (left), saved as sequence number 1 (right)
-A[50] // UI action number 50 in the test order
< 45@10a KCVG> // 45% coverage (left) of the known UI (right) as the number

10a (a = x10, b = x100, c= x1000, etc.) of derived UI actions
... SR = 18036 KB / SC = 0.00% // SR = SUT RAM, SC = SUT CPU
... TC: 0.170 s / TR: 145.5 MB // TC = TESTAR CPU (delay between UI actions),

TR = TESTAR RAM usage (some test set ups will consume higher memory; e.g.
graphing of long tests with non random algorithms for action selection)

L/S/T: 1/2/3 // serialization queues (Logs, Screenshots, Test java objects)
...
S[1=1]-A[100] < 60@16a KCVG>... SR = 19480 KB / SC = 57.14% ... TC: 0.065

s / TR: 126.0 MB ... L/S/T: 5/5/0

// final metrics at test sequence end
verdict,FAILS,minCvg(%),maxCvg(%),maxpath,graph-states,abstract-states,

PASS, 0, 0.00, 99.90, 4, 10, 9,
graph-actions,test-actions,SUTRAM(KB),SUTCPU(%),TestRAM(MB),TestCPU(s),

100, 100, 6840.0, 114.29, 145.5, 0.774
fitness = 1.1828199545645511E-4 // 0.0 best, 1.0 worst (based on all metrics)

• Tests logs metrics (output/logs/*.log). Check section 5.3.

5.7 How to analyse tests data
Lets assume TESTAR automated tests discovered issues in your SUT (e.g. unexpected
exceptions). You will know if you see folders like output/sequences_warning, output/se-
quences_suspicioustitle, output/sequences_unresponsive, output/sequences_unexpectedclose,
output/sequencces_fail, or output/sequences_other. You can also notice it by a verdict met-
ric different than PASS.

So, we have a faulty test sequence. Then, how do we analyse the cause to help on defect
correction? Next, it is provided the typical process flow to analyse the reported tests data:

1. Check the screenshots version of the graphs, corresponding to the faulty test sequences.
In the graph, use the viewer (e.g. web browser) text finding utility and search for the
word FAIL. Or alternatively, check the last23 UI action that was executed in the test

23Search the text [action_order], which you can get from the logs and/or metrics

40

Test reports 5 TEST REPORTS

sequence. The goal is to move to the test ending, inspecting the last UI states and
actions because all of the previous test actions were executed successfully with the
verification oracles that you did specify in your test set up. In most cases, the last
UI state and action might reveal the cause of the fault. Use other graph versions and
states/actions identifiers to retrieve as much information as you need in your analysis.

2. If the graphs did not reveal useful hints about the fault (e.g. missing screenshots), then
you can still check the detailed ordered executed actions logs. Open the corresponding
actions table log as described in section 5.3 (logs/*_testable.log). Jump to the end of
the log (last executed actions) and revise in reverse ordering the executed actions and
traversed UI states. You can use states and actions identifiers to know about them
(screenshots, detailed24 actions information). The goal is to figure out the UI context
and actions at which the fault did emerge.

3. Yet, you might still not be able to deduce the cause of the fault from graphs and logs
(e.g. the information about states and actions is not complete or not detailed enough).
Several open approaches follow: a) view working mode (section 3.4), which most
probably will not provide any additional hint (but you might want to give it a chance)
b) replay working mode (section 3.3), where you might come into a non reproducible
test, c) preparing your test set up for further refined tests oriented towards the UI
part that revealed the fault or d) checking your SUT logs, if any.

4. Did you reach this point? You know about a fault in your SUT but you were unable
to understand the cause? Then, prepare your SUT test environment to provide clues
(the missing information for your analyses). For example, make sure that no crucial
SUT debugging information will be missing after a test execution.

5. At a final step, once you succeed to identify the UI context (states and actions) for
the fault, you can prepare your test set up to perform stress testing over that specific
UI context. Just start with a test protocol that derives no actions at all, and enable
these actions that are relevant for the fault.

24Listing 3

41

Experimental features 7 EXPERIMENTAL FEATURES

6 Further documentation
For more information, check the next available online resources:

• FAQ (Frequently Asked Questions): https://testar.org/faq/

• Tool website: https://www.testar.org, for up to date information

• GitHub repository: https://github.com/STaQ-PROS-UPV/TESTAR, for technical in-
formation. You might also want to submit pull requests in the project: https:
//github.com/STaQ-PROS-UPV/TESTAR/pulls

7 Experimental features
TESTAR development is ongoing. Some unfinished tasks of which you might find signs and
hints on the code are listed next:

• AdhocTest mode: it allows sending commands (UI actions) to TESTAR through a
socket (port 47357). For example, sending a message with the format

<action_type(parameters*)>\r\n // e.g. LC(500,420)

would indicate to TESTAR that it should left click (LC) at absolute screen position
(500,420). This feature is unused and deprecated.

• Evolutionary algorithm for action selection: it is part of an ongoing research and is
thus experimental.

• Prolog based algorithms for action selection: it is part of an ongoing research and is
thus experimental.

• Semi-automated specification of oracles: it is part of an ongoing research and is thus
experimental.

42

https://testar.org/faq/
https://www.testar.org
https://github.com/STaQ-PROS-UPV/TESTAR
https://github.com/STaQ-PROS-UPV/TESTAR/pulls
https://github.com/STaQ-PROS-UPV/TESTAR/pulls

Known issues 8 KNOWN ISSUES

8 Known issues
Known issues are enumerated next:

1. Graphical environment: color = 32bit is required. Using remote desktop with lower
color (i.e. 16/24 bit) will result on an "Unable to update layered window" error
message (@console)

2. System Under Test: browsers support for Web applications:

a) Internet explorer x86 (32 bit executable) will result on a "System is offline! I
assume it crashed" error message (@console).

b) Internet explorer x64 (64 bit executable) might result in undetected UI widgets.
IE automation might stop working because of oleacc.dll, which is a windows system
library responsible for the Active Accessibility support. To fix, you will need to register
the library in windows registry: open an elevated command line (cmd.exe with admin
rights) and execute the command "regsvr32.exe oleacc.dll" IE automation might also
fail because of security settings. On Windows server is very likely that IE has default
security settings that prevents scripting. You have to allow active scripting for the
site you want to automate: "IE Tools/Internet Options/Security tab/Custom level
button/Scripting/Allow active scripting".

c) Mozilla Firefox : scrollbars not detected (not compliant with Accessiblity API).

d) Google Chrome: web application widgets not being detected.

3. Protocol editor: "ReferenceError: ImportPackage is not defined in <eval>
at line number 2" error25 message (just ignore).

4. Protocol compilation: "JDK required (running inside of JRE)" error message.
Make sure you are running TESTAR with Java JDK version (not JRE version). Did
you double click testar.jar? Check the run.bat script to know about how it should be
run for a JDK JVM (x64).

5. Console error messages:

a) "System is offline! I assume it crashed": check whether the SUT is already running
(close or finish its process as required) Yet, TESTAR will automatically try to detect
and kill any SUT running processes.

b) OutOfMemory exceptions: TESTAR might consume too much memory in long
tests. To solve, use random algorithm, disable graphs and/or edit the run.bat script
and modify the line "set MEM=n" with a value for n in number of Gigabytes, which
establishes the JVM memory allocation pool. You can check the used TESTAR RAM
from reported metrics (see section 5).

25Due to outdated library: jsyntaxpane-0.9.5-b29

43

Widgets and their properties A WIDGETS AND THEIR PROPERTIES

A Widgets and their properties

A.1 UI widget
A Widget is a graphical element in the UI of the System Under Test (SUT). General exam-
ples are: windows, titlebars, scrollbars, toolbars, menubars, statusbars, progress-bars, trees,
buttons, radio buttons, checkboxes, comboboxes, lists, list items, tables, data items, labels,
texts, text boxes, tooltips, panels, groups, spin-boxes, sliders, separators, rulers, headers,
footers, menu items, popup menus, password fields, page tabs, tab items, icons, images,
canvas, hyperlinks, etc. There can also be customised widgets with unknown visual ap-
pearances and functionalities, which are specific to the SUT.

The more general definition of a widget would be a placeholder with a graphical aspect
at which the user could perform an interaction like pressing, selecting, inspecting a piece
of information, getting progress feedback of an activity (e.g. loading a file), etc. Widgets
conform the API for the user to interact with the SUT. A widget is usually char-
acterized by a particular behaviour. For example, the user could click a button. It is also
characterized by a set of properties that define its visual aspect in the screen (e.g. position,
shape, color, text).

A.2 Accessibility technology
We use the Accessibility API – which simplifies computer usage for people with disabilities –
to obtain the SUT’s GUI state. It allows to gather information about the visible widgets of
an application and gives TESTAR the means to query their property values. After querying
the application’s GUI state, we save the obtained information in a so-called widget tree
which captures the structure of the GUI.

Figure 22 displays an example of such a tree. Each node corresponds to a visible widget
and contains information about its type, position, size, title and indicates whether it is
enabled, etc. The Accessibility API gives access to over 160 properties which allows us to
retrieve detailed information such as:

• The type of a widget.

• The position and size which describe a widget’s rectangle (necessary for clicks and
other mouse gestures).

• It tells us whether a widget is enabled (It might not make sense to click disabled
widgets).

• Whether a widget is blocked. This property is not provided by the API but we
calculate it. Figure ?? shows a message box which blocks all other widgets behind it.
Our monkey detects those and other modal dialogs (like menus) and sets the blocked
attribute accordingly.

• Whether a widget is focused (has keyboard focus) so that the monkey knows when
it can type into text fields.

• Attributes such as title, help and other descriptive attributes are very important to
distinguish widgets from each other and give them an identity. We will make use of
this in the next subsection when we describe our algorithm for action selection.

44

Widgets and their properties A WIDGETS AND THEIR PROPERTIES

type: TButton

...
rect: [15, 25, 65, 55]

hasFocus: true
enabled: false
title: "Button"

Desktop

Window

Button Text SliderMenu

MI MI MI MI

type: TMenuItem

...
title: "File"

Figure 22: The state of a GUI can be described as a widget tree which captures property
values for each control.

This gives us access to almost all widgets of an application, if they are not custom-coded
or drawn onto the window. We found that the Accessibility API works very well with the
majority of native applications (since the API works for all standard widgets, the developers
do not have to explicitly code for it to work).

A.3 Widget properties
As indicated, the Accessibility API gives access to over 160 properties of the widgets. The
properties of each widgets characterises the visual appearance and behaviour of that par-
ticular widget. In this section we list the most26 useful properties for test automation in
TESTAR:

• Role: determines the native widget type (e.g. UIAButton in Windows platforms)
and, implicitly, its expected behaviour (e.g. clicking a button or typing in a text box).

• ControlType: the native widget type as a code (check Role property).

• ClassName: the widget type (check Role property). For example: Button.

• AutomationId: an identifier (could be empty) to uniquely represent the widget.

• Title: the text (might be empty) displayed in the widget (e.g. "Close" in a button
that closes a window).

• Name: the name of the widget (could be empty).

• Shape: screen position (x, y) and dimensions (width, height).

• Enabled: true or false. Indicates whether the widget will react to user inputs (e.g. a
left click).

26Other properties can be easily extended to TESTAR from the accessibility technologies.

45

Widgets and their properties A WIDGETS AND THEIR PROPERTIES

• ZIndex: the Z-ordering of the widget in the User Interface, which determines whether
it is in foreground (higher value) or in background (lower value).

• Orientation: widget orientation as none (0), horizontal (1) or vertical (2).

• ScrollPattern: true or false. Whether a scrolling pattern is available.

• HorizontallyScrollable: true or false. Whether a widget is an horizontal scroller.

• ScrollHorizontalPercent: for an horizontal scrollable widget, determines the amount
(%) of horizontal scrolling applied.

• ScrollHorizontalViewSize: for an horizontal scrollable widget, determines the hor-
izontal scrolling window used.

• VerticallyScrollable: true or false. Whether a widget is a vertical scroller.

• ScrollVerticalPercent: for a vertical scrollable widget, determines the amount (%)
of vertical scrolling applied.

• ScrollVerticalViewSize: for a vertical scrollable widget, determines the vertical
scrolling window used.

• Desc: a descriptive text of the widget.

• ProviderDescription: technical descriptive text of the widget.

• ToopTipText: a floating descriptive text displayed to the user (could be empty).

• HelpText: a help text displayed to the user (could be empty).

• IsKeyboardFocusable: true/false. Whether the widget can gain keyboard focus.

• HasKeyboardFocus: true/false. Whether the keyboard focus is at the correspond-
ing widget.

• WindowVisualState: for widgets of type Window determines its visual state as
normal (0), maximized (1) or minimized (2).

• WindowInteractionState: for widgets of type Window determines the interaction
state as running (0), closing (1), ready for user iteraction (2), blocked by modal window
(3) and not responding (4).

• FrameworkId: a string containing the name of the underlying UI framework that the
automation element belongs to. It enables to process automation elements differently
depending on the particular UI framework (e.g. "Win32", "WinForm", and "DirectUI"
for Windows platforms).

Additionally, TESTAR provides derived (calculated) properties:

• Path: a sequence of numbers that determine the widget location in the widgets-tree
hierarchy.

• Ancestors: a list of Roles that determine the parent widgets in the widgets-tree
hierarchy.

46

Widgets and their properties A WIDGETS AND THEIR PROPERTIES

• ConcreteID: an identifier that uniquely represents the widget (see section C for a
more detailled explaination about identifiers).

• Abs(R)ID: an identifier that abstractly represents the widget by its Role property.
Again, we refer to section C for a more detailled explaination about identifiers.

• Abs(R,T)ID: an identifier that abstractly represents the widget by its Role and Title
properties.

• Abs(R,T,P)ID: an identifier that abstractly represents the widget by its Role, Title
and Path properties.

• State: an identifier that concretely represents the widget-tree.

• Blocked: true or false. Whether the widget is blocked by other widgets in the UI
(e.g. other widget is on top/foreground or the widget is not part of a modal window).
A blocked widget should not react to user inputs (but a Fault could be discovered
doing so).

• IsWindowModal: true or false. Whether the widget behaves as a modal window
(any widget outside its tree hierarchy will be Blocked).

Note that not all the properties may be available for every widget, and even if the
property is available it may have no value.

47

Widgets and their properties B UI STATES AND ACTIONS

B UI States and Actions

B.1 UI States
The User Interface (UI) of a software application is composed of all the possible graphical
elements that could be displayed to the end-user. It includes all the windows, dimensions,
positions on screen, widgets shapes and visual aspects, data populated in tables, displayed
texts, and so on.

Consequently, we define theUI State of a SUT, as a concrete widget-tree at a particular
timestamp that captures the structure of the UI at that particular moment. The hierarchy
in the tree represents parent/child relationships between widgets like a menu bar is part
of a window, menu items are part of a menu or list items are part of a list. The root of
the three represents the SUT UI and embrace as children all its pertaining windows at a
particular timestamp.

A Widget-tree wt is defined as wt = {root, subtree1, . . . , subtreen} where each of the
n subtrees are a child widget-tree of the root widget, leaves are UI widgets like buttons,
labels, list items and parent widgets in the tree are UI containers like windows, menus, lists,
tables, and so on. Figure 23 displays a simplified sample widget-tree for the Calculator
SUT. Each box corresponds to a widget displayed on screen, for which the sample only
shows the properties Role and Title. In a realistic scenario, and more complex software UI,
the widget-tree can easily have hundreds of widgets.

B.2 UI Action
We define an Action as a user event (interaction) on the UI like clicking buttons and menu
items, typing text in text boxes or dragging scrollbars. Thus, all actions are performed in
a particular UI state, so every action belongs to a state. Particularly, some actions might
belong to specific widgets in the widget-tree (e.g. a left click is performed in a widget, but
pressing the ESC key is not). Consequently, for each UI state s there is a set of feasible
UI actions A(s), specified in the test protocol (check section 4), as A(s) = {a1, . . . , an}.
Each action a is defined by a set of properties as a = {p1, . . . , pk}. For example, {{Role,
LeftClick}, {Target, {168.5, 71.5}}} represents a left clicking action at screen position x =
168.5 and y = 71.5.

Finally, we define a State transition t(a) as the result of executing an action a as
t(a) = s→ s′ where s is the state at which the action was performed and s′ the state after
its execution (they could be equal or different). Thus, a TESTAR test sequence is defined
as test = s0 →a1

s1 →a2
s2 → · · · →at

st, where s0 is the UI state once the SUT is started
and st the final state after the test sequence execution. For each step in the test sequence
TESTAR chooses an action from the set of feasible actions A(si).

A list of supported UI actions is enumerated next, yet this list can be easily extended:

• Mouse-move: moves the mouse pointer to a new location (e.g. a widget position).

• Left-click: presses left mouse button at current mouse pointer location.

• Right-click: presses right mouse button at current mouse pointer location.

• Left-double-click: presses twice the left mouse button.

• Left-triple-click: presses three consecutive times the left mouse button.

48

Widgets and their properties B UI STATES AND ACTIONS

SUT	

Role:	Window	

Role:	TitleBar,	Title:	Calculadora	

Role:	MenuBar	

Role:	MenuItem	

Role:	Bu:on,	Title:	Minimize	

Role:	Panel	

Role:	Bu:on,	Title:	Maximize	

Role:	Bu:on,	Title:	Close	

Role:	MenuItem,	Title:	Ver	

Role:	MenuItem,	Title:	Edición	

Role:	MenuItem,	Title:	Ayuda	

Role:	Text,	Title:	Result	

Role:	Bu:on,	Title:	0	

Role:	Bu:on,	Title:	9	

…	

…	
Role:	Bu:on,	Title:	=	

1

1

2

2

3

3

4

4

Figure 23: Sample widget-tree representing the UI state at a concrete timestamp.

49

Widgets and their properties B UI STATES AND ACTIONS

• Drop-down (left-click + right-arrow keys): a left click followed by the right arrow key
press. It may expand some menus on some SUTs.

• Drag-from-to: drags from one location to another. For example, dragging an object
from a palette to a drawing canvas.

• Click-type-into: clicks on a screen location and writes some text on keyboard focus.

• Hit-key: presses a keyboard key.

• Slide-from-to (TESTAR automated): commonly used for sliders.

• Kill-process (TESTAR automated): kills unwanted processes that may be started by
actions performed during a test sequence.

• Activate-system (TESTAR automated): brings the SUT window to foreground (in top
of any other windows on screen).

50

Widgets and their propertiesC IDENTIFIERS FOR WIDGETS, STATES AND ACTIONS

C Identifiers for Widgets, States and Actions
TESTAR uses identifiers for its action selection algorithms and reporting. An identifier
helps to uniquely reference each widget in the screen. Consequently, an identifier can be
calculated for a UI state. Additionally, UI actions are also referenced by an identifier. Next,
the formulas applied to calculate the identifiers for widgets, states and actions are presented:

• ID formula: TESTAR applies a formula f that converts, with low collision, a text t of
varying length into a shorter representation as f(t) = hashcode(t)+length(t)+crc32(t)
where + is the concatenation of strings.

• Concrete Widget ID: the ID for a widget w is calculated as id(w) = f(Role +
Title + Enabled + Path) where + is the concatenation of strings from the values of
the corresponding properties. An example text for an enabled “ok” button would be:
Buttonoktrue0,0,1 (“0,0,1" being the path in the widget-tree). Then, f is applied to
the text.

• Abstract Widget ID: similar to the concrete widget ID, but using a particular set
of properties like Abs(R) for Role, Abs(R, T) for Role and Title and Abs(R, T, P) for
Role, Title and Path.

• Concrete State ID: the ID for a state s is calculated as id(s) = f(id(w)1 + · · · +
id(w)n) where the order of the widgets in the tree hierarchy is preserved in the calcu-
lation.

• Abstract State ID: similar to the concrete state ID, but using the abstract widgets
ID.

• Concrete Action ID: the ID for an action a in state s is calculated as id(a) =
f(id(s) + p1 + · · ·+ pk) where pi are the action properties.

• Abstract Action ID: similar to the concrete action ID, but discarding properties of
the action (e.g. texts typed, keys pressed). For example, we can refer to writing in a
concrete textbox, no matter of the text used to write.

Additionally, a prefix is used for the identifiers to distinguish between:

• Concrete widgets: "WC" prefix (e.g. WC1ef69q9183894040580).

• Abstract (Role) widgets: "WR" prefix (e.g. WR1h6ibpb92248851252).

• Abstract (Role,Title) widgets: "WT" prefix (e.g. WTew6teaa2733511101).

• Abstract (Role,Title,Path) widgets: "WP" prefix (e.g. WP54gyib14378315832).

• Concrete states: "SC" prefix (e.g. SCgktqw33c43868414317).

• Abstract (Role) states: "SR" prefix (e.g. SR1kx62t53b13002840823).

• Concrete actions: "AC" prefix (e.g. AC1hplft17f3457170962).

• Abstract actions: "AA" prefix (e.g. AA1hplft17f3457170962).

Consequently, the equality of widgets, states and actions depend on the equality of
identifiers. Abstraction provides the capability to cluster widgets, states and actions, and
so the graphs (check sections 5.3 and 5.5).

51

Test settings D TEST SETTINGS

D Test settings
The first step to test your software application is to set up your test settings. We provide
a predefined set of settings for desktop and web applications. You can find them under
the settings folder at the tool installation folder. Each test settings configuration is stored
inside a unique subfolder (e.g. desktop_generic), which contains: a) a Java source file (e.g.
Protocol_desktop_generic.java) with the executable test protocol, described in section 4
and b) a test.settings file, which contains a list27 of test properties28 described next:

• ActionDuration = a non-negative decimal. Sets the speed, in seconds, at which an
UI action is performed. For example, typing a text will introduce delays between each
key stroke.

• AlgorithmFormsFilling = true or false. Enables or disables a specific UI action
selection algorithm that will try to populate data in UI forms.

• ClickFilter = regular expression29 (e.g. .*[cC]lose.*|.*[eE]xit.*|.*[pP]rint.*). Pre-
vents UI actions to be performed on UI elements whose TITLE (check appendix ??)
matches the regular expression. The rationale behind this is that certain UI actions
might be dangerous or undesirable without human supervision (e.g. printing docu-
ments, files operations).

• CopyFromTo = (source_file_path;target_file_path)*. A list of (>=0) pairs of
source and target files to copy before a test starts (click the text-area and a file dialog
will pop up). Sometimes, it can be useful to restore certain configuration files to their
default prior to SUT execution, so that the SUT starts from a desired state.

• Delete = (file_path)*. A list of (>=0) files to delete before a test starts (click the
text-area and a file dialog will pop up). Certain SUTs may generate configuration files,
temporary files and/or files that save the SUT’ state. Thus, you can restore your SUT
environment to a desired state removing files generated from previous executions.

• Discount = a decimal in the range 0..1. This parameter is used by the qlearning
algorithm (check TestGenerator property).

• DrawWidgetInfo = true or false. Sets whether to display detailed overlay infor-
mation, inside the Spy mode (see section 3.2), over the selected widget in the SUT’
UI.

• DrawWidgetTree = true or false. Sets whether to display a graphical representation
of the widget-tree, inside the Spy mode (see section 3.2), for the selected widget in the
SUT’ UI.

• DrawWidgetUnderCursor = true or false. Sets whether to display brief overlay
information, inside the Spy mode (see section 3.2), over the selected widget in the
SUT’ UI.

27Sorted alphabeticaly
28Most can be edited through the tool User Interface, as described in section ??. Nonetheless, you can

edit them directly in the file.
29http://en.wikipedia.org/wiki/Regular_Expression

52

http://en.wikipedia.org/wiki/Regular_Expression

Test settings D TEST SETTINGS

• ExplorationSampleInterval = a positive number. Sets the metrics sampling inter-
val by the number of executed UI actions during a test.

• ForceForeground = true or false. Sets whether to keep the SUT’ UI window active
in the screen (e.g. when its minimised or when a process is started and its UI is in
front, etc.).

• ForceToSequenceLength= true or false. Setting the value to true, if a test fails (e.g.
the SUT crashes), TESTAR continues the test sequence until it reaches the specified
test sequence length (check SequenceLength property). Otherwise (false value), the
test will finish in the presence of a fail.

• GraphsActivated = true or false. Sets whether to use the graphing feature of the
tool (see appendix ??).

• GraphResuming = true or false. If the GraphsActivated property is set to true,
establishes whether to resume from a the last test sequence.

• MaxReward = a decimal greater or equal to 1. This parameter is used by the
qlearning algorithm (check TestGenerator property).

• MaxTime = a positive number. Sets a time window, in seconds, after which the test
is finished (e.g. stop after an hour, a day or a week).

• Mode = Spy, Generate or GenerateDebug (check ShowVisualSettingsDialogOnStartup
property). Runs the tool into the Spy, Generate or GenerateDebug mode (see section
??).

• NonReactingUIThreshold = a positive number. Sets a test window (number of
UI actions) for which a non-reacting UI will force to perform UI actions that could
potentially make the UI to react (e.g. an ESC key stroke to close a popup dialog box).

• LogLevel = 0, 1 or 2. Sets the logging level to critical messages (0), information
messages (1) or debug messages (2).

• OfflineGraphConversion = true or false. If the graphing feature is activated (check
GraphsActivated property) and the graphviz was installed (check section ??), sets
whether to convert (false value) the graphs (dot to svg) at the end of a test. If the
value is set to true, offline graph conversion can be performed from the graphs folder
(check section 5.5).

• OnlySaveFaultySequences = true or false. Sets whether to save non-fail test se-
quences.

• ProcessesToKillDuringTest = regular expression (e.g. .*[oO]utlook.*|firefox.exe).
Any process name that matches the regular expression and is started during a test
will be automatically killed. The rationale behind this is that some UI actions could
start undesirable processes (e.g. an email client).

• PrologActivated = true or false. Sets whether to calculate prolog based facts and
rules representing information about the SUT (check the prolog algorithm at the Test-
Generator property).

53

Test settings D TEST SETTINGS

• ProtocolClass = settings_folder/Test_protocol_class_name. Links to the test pro-
tocol (see section 4) class under the folder denoted by the MyClassPath property.

• ReplayRetryTime = a positive number. Inside the replay mode (see section 3.3),
establishes the time window in seconds for trying to replay a UI action of a replayed
test sequence.

• SequenceLength = a positive number. Sets each test sequence (check Sequences
property) length as the number of UI actions to perform30. Check the StopGenera-
tionOnFault, ForceToSequenceLength, MaxTime, SuspiciousTitles, TimeToFreeze and
ProtocolClass properties for specific behaviour.

• Sequences = a positive number. Number of times to repeat a test.

• ShowVisualSettingsDialogOnStartup = true or false. Sets whether to display the
tool UI. If false is used, then the tool will run in the mode of the Mode property.

• StartupTime = a positive number. Sets how many seconds to wait for the SUT to
be ready for testing (its UI being accesible by TESTAR). If the SUT did not start on
time the test will not run. Otherwise, test will start as soon as the UI is accesible.
Take into account that the first time the SUT is run on your environment will usually
take more time than next executions (e.g. due to memory catching).

• StopGenerationOnFault= true or false. Sets whether to finish a test in the presence
of a fail (e.g. a SUT crash). Setting it to false does not necessarily mean that the test
will continue, but the test will try to continue as far as the SUT accepts additional
UI actions and the test set up does not finish the test by other means (e.g. MaxTime,
SuspiciousTitles, TimeToFreeze or ProtocolClass properties).

• SUTConnector=COMMAND_LINE, SUT_WINDOW_TITLE or SUT_PROCESS_NAME.
Sets the approach used to connect with your SUT:

COMMAND_LINE: SUTConnectorValue property must be a command line that
starts the SUT. It should work from a Command Prompt terminal window (e.g. java -
jar SUTs/calc.jar). For web applications31, follow the next format: web_browser_path
SUT_URL.

SUT_WINDOW_TITLE: SUTConnectorValue property must be the title32 dis-
played in the SUT’ main window. The SUT must be manually started and closed.

SUT_PROCESS_NAME: SUTConnectorValue property must be the process
name of the SUT. The SUT must be manually started and closed.

• SUTConnectorValue = check SUTConnector property.

• SuspiciousTitles = a regular expression (e.g. .*[eE]rror.*|.*[eE]xception.*). Checks
the UI for any suspicious title that could denote problems in the SUT. TESTAR
checks whether there exists a widget’ TITLE (check appendix ??) in the UI that
matches the regular expression. If a match was found the test will continue but you
will find the issues found in the reports (see 5). For example, a critical message like “A

30Note: higher values will consume more hardware resources, specialy if graphing was activated.
31Check the KNOWN_ISSUES file at tool installation folder (see section ??) for compatible web browsers.
32Not applicable for empty titles

54

Test settings D TEST SETTINGS

NullPointerException Exception has been thrown” can be represented by the regular
expression “.*NullPointerException.*”.

• TestGenerator = random, random+, qlearning, qlearning+, maxcoverage, prolog or
evolutionary. Sets the UI action selection algorithm33 during a test:

random: picks a random UI action each time.

random+: enhances random trying to jump to less explored UI.

qlearning: a reinforcement learning approach34 for UI actions selection.

qlearning+: enhances qlearning trying to jump to less explored UI.

maxcoverage: it tries to explore as much UI as possible.

prolog: experimental. Uses prolog to decide on the next UI action to execute.

evolutionary: experimental. Uses evolutionary computation to build a UI action
selection algorithm.

• TimeToFreeze = a positive number. Sets the time window, in seconds, for which
to wait for a not responding SUT. After that, the test will finish with a fail. The
rationale behind this is that the SUT could hang, be performing heavy computations
or be waiting for slow operations (e.g. bad internet connection). The value of the
property is thus a threshold after which the SUT is interpreted to have hung.

• TimeToWaitAfterAction = a non-negative decimal. Sets the delay, in seconds,
between UI actions during a test. It directly affects the reproducibility of tests and
tests performance. Setting it to a low value will speed up the tests, but the SUT could
not have finished processing an action before the next action is executed by TESTAR.
In the latter case the test could not be reproducible, but it could reveal potential faults
(stress testing).

• TypingTextsForExecutedAction = a positive number. Sets how many typing
actions with different texts must be performed, on the asme state’ widget, to consider
it an executed action.

• UseRecordedActionDurationAndWaitTimeDuringReplay = true or false. In-
side the replay mode (see section 3.3) sets whether to use the action duration (check
ActionDuration property) and action delay (check TimeToWaitAfterAction property)
as specified in the recorded test sequence. If set to false, the values from the current
set up are used.

• VisualizeActions = true or false. Sets whether to display overlay information, inside
the Spy mode (see section 3.2), for all the UI actions derived from the test set up (check
section ??).

The next set of properties must not be modified:
33It can determine the likelihood to reveal a SUT Fault. You can intervene in the selection at any time,

switching to the GenerateManual working mode (check section ??) through Shift + Left/Right-arrows
keyboard shortcuts, from which you can perform the actions manually. Note that you will have to wait
ActionWaitTime property seconds between actions, otherwise the actions will be missed in the recorded
test sequence. To resume the automated tests switch again to the previous working mode.

34https://en.wikipedia.org/wiki/Q-learning

55

https://en.wikipedia.org/wiki/Q-learning

Test settings D TEST SETTINGS

• MyClassPath = ./settings

• OutputDir = ./output -The directory where tests information can be found (see
section 5).

• TempDir = ./output/temp -TESTAR will use this directory to store temporary files
during the execution of test sequences.

• PathToReplaySequence = ./output/temp

• FaultThreshold = 0.01. Any verdict between this threshold and 0.9 will be consid-
ered a test fail.

• ExecuteActions = true or false. Unused property.

• VisualizeSelectedAction = true or false. Unused property.

• ShowSettingsAfterTest = true or false. Unused property.

56

Keyboard shortcuts E KEYBOARD SHORTCUTS

E Keyboard shortcuts
Several keyboard shortcuts are available for the different working modes35 (section ??):

Keyboard shortcut Effect Working modes
Spy Test Replay

Shift + Arrow Down Close TESTAR immediately X X X
(panic button)

Shift + Arrow Left/Right Switch the working mode X X
Shift + Space Toggle slow motion test X
Shift + 1 Toggle UI actions display X X(in debug mode)
Shift + 2 Toggle UI widget X

information display
Shift + 3 Toggle UI widget X

extended information display
Shift + 4 Toggle UI widget-tree display X

Shift + ALT Toggle widget-tree X
hierarchy display

ALT Define data input values X
for an UI widget

CAPS_LOCK/TAB + UI widgets’ X
(Shift) Ctrl actions filtering

Table 5: Keyboard shortcuts

35Check figure 24 for a flowchart of the different working modes and how to switch between them

57

Directories F DIRECTORIES

Figure 24: Working modes flowchart

F Directories
Key36 tool directories are presented next:

./settings Tests set ups

./output Reports: logs, screenshots, graphs, metrics, serialized tests

./output/temp Temporary files such as the last recorded test sequence

./output/sequences All the serialized test sequences

./output/sequences_V Classified test sequences by verdict V

./output/srcshots Screenshots of tests UI states and executed UI actions

./output/logs Tests logging data

./output/graphs Tests graphing for visual analysis

./output/metrics Tests performance indicators

./suts Sample SUTs binaries

Table 6: Directories

36output directory, and its contents, must exist before running tests. Refer to script clean-output.bat,
which recreates the required directories. Be careful, you should previously copy/backup your tests reports
(e.g. rename output to my_reports_timestamp)

58

	About
	Getting TESTAR
	Running TESTAR
	Generate mode
	Spy mode
	Replay mode
	View mode
	Headless mode

	Test protocol
	initialize method
	moreSequences method
	startSystem method
	beginSequence method
	getState method
	getVerdict method
	moreActions method
	deriveActions method
	selectAction method
	executeAction method
	stopSystem method
	finishSequence method

	Test reports
	Tool logs
	Tests sequences
	Tests logs
	Tests UI screenshots
	Tests graphs
	Tests metrics
	How to analyse tests data

	Further documentation
	Experimental features
	Known issues
	Widgets and their properties
	UI widget
	Accessibility technology
	Widget properties

	UI States and Actions
	UI States
	UI Action

	Identifiers for Widgets, States and Actions
	Test settings
	Keyboard shortcuts
	Directories

