
Automated testing of web applications with
TESTAR

Lessons learned testing the Odoo tool

Francisco Almenar, Anna I. Esparcia-Alcázar, Mirella Mart́ınez, and Urko
Rueda

Research Center on Software Production Methods (PROS)
Universitat Politècnica de València

Camino de vera s/n 46022, Valencia, Spain
{falmenar,aesparcia,mmartinez,urueda}@pros.upv.es

http://www.testar.org

Abstract. The TESTAR tool was originally conceived to perform auto-
mated testing of desktop applications via their Graphical User Interface
(GUI). Starting from the premise that source code is not available, TES-
TAR automatically selects actions based only on information derived
from the GUI and in this way generates test sequences on the fly. In this
work we extend its use to web applications and carry out experiments
using the Odoo open source management software as the testing object.
We also introduce novel metrics to evaluate the performance of the test-
ing with TESTAR, which are valid even when access to the source code
is not available and testing is only possible via the GUI. We compare
results obtained for two types of action selection mechanisms, based on
random choice and Q-learning with different parameter settings. Statis-
tical analysis shows the superiority of the latter provided an adequate
choice of parameters; furthermore, the results point to interesting areas
for improvement.

Keywords: Automated GUI Testing,Testing Metrics, Testing Web Ap-
plications, Q-learning

1 Introduction

TESTAR is an automated tool that performs testing via the GUI, using the oper-
ating system’s Accessibility API to recognise GUI controls and their properties,
and enabling programmatic interaction with them. It derives sets of possible
actions for each state that the GUI is in and selects and executes appropriate
ones, thus creating a test sequence on the fly. In previous work we have shown
how TESTAR has been successfully applied to various commercial desktop ap-
plications [1, 2, 4, 6], allowing automated testing of not just the GUI but of all
the functionality that is accessible via the GUI, including e.g. databases.

In this work we report the first application of TESTAR to test a web applica-
tion, namely the Odoo open source enterprise resource planning (ERP) system.



Testing web applications poses challenges that differ from those of desktop ap-
plications. For instance, web latency must be taken into account. Hence, the
test automation tool must wait for the GUI to react before executing the next
action. Also, we must avoid testing the browser rather than the application; for
instance, we must filter out the search bar or the bookmarks.

We run experiments in three phases or iterations, refining the process after
each phase. We used Q-learning with different parameter combinations as the
action selection mechanism, and compare them using random action selection as
a baseline. For the comparison we have introduced four new metrics that evaluate
the quality of the testing; these metrics take into account that the source code
of the software under test (SUT) is not available.

The rest of this paper is structured as follows. Section 2 explains the two
main decisions taken by the human tester when testing with TESTAR, namely
the action selection mechanism and the testing protocol. Section 3 introduces
the metrics used for quality assessment of the testing procedure. Section 4 sum-
marises the experimental set up, the results obtained and the statistical analysis
carried out; it also highlights the problems encountered. Finally, in Section 5 we
present some conclusions and outline areas for future work.

2 TESTAR settings

The two main inputs for the human tester in TESTAR are the choice of an
action selection mechanism and the protocol. We briefly describe these below.

Action selection We have employed the Q-learning algorithm to guide the
action selection process. Q-learning is a model-free reinforcement learning tech-
nique in which an agent, at a state S, must choose one among a set of actions
A available at that state. By performing an action a ∈ A, the agent can move
from state to state. Executing an action in a specific state provides the agent
with a reward (a numerical score which measures the utility of executing a given
action in a given state). The goal of the agent is to maximize its total reward,
since it allows the algorithm to look ahead when choosing actions to execute. It
does this by learning which action is optimal for each state. The action that is
optimal for each state is the action that has the highest long-term reward.

Our version of the Q-learning algorithm is governed by two parameters:
maxReward and discount. Depending on how these are chosen the algorithm will
promote exploration or exploitation of the search space. The maxReward pa-
rameter determines the initial reward unexplored actions have; so, a high value
biases the search towards executing unexplored actions. On the other hand,
discount establishes how the reward of an action decreases after being executed.
Small discount values decrease the reward faster and vice versa.

TESTAR protocol A TESTAR custom protocol is a Java class that allows
extending the basic functionality in order to implement complex action sets,



specific filters and sophisticated oracles. Successive iterations allow the human
tester to observe the problems encountered in the testing process and improve
the protocol. In this work, three such iterations were carried out.

3 Metrics

Finding appropriate metrics for assessing the quality of the testing has been a
long standing issue. For instance, [3] defines a number of metrics for GUI testing,
but these imply having access to the code of the software under test (SUT); one
of the strengths of TESTAR is precisely not relying on the assumption that this
is the case. However, this also implies that specific metrics must be defined. In
this work they were chosen as follows:

– Abstract states This metric refers to the number of different states, or
windows in the GUI, that are visited in the course of an execution.

– Longest path Any automated testing tool must ensure the deepest parts
of the GUI are tested. To measure whether the tool has just stayed on the
surface or it has reached deeper, we define the longest path as the longest
sequence of non-repeated (i.e. excluding loops) consecutive states visited.

– Minimum and maximum coverage per state We define the state cover-
age as the rate of executed over total available actions in a given state/window;
the metrics are the highest and lowest such values across all windows. This
allows us to know to what extent actions pertaining to states were explored.

A consequence of not having access to the source code is that the metrics
given above can be used to compare the efficiency of different testing methods,
but not to assess the overall goodness of a method in isolation, because we do not
know the global optima for each metric; for instance, we cannot know exactly
how many different states there are.

4 Experiments and results

4.1 Odoo - the software under test (SUT)

Odoo1 is an open source Enterprise Resource Planning software consisting of
several enterprise management applications that can be installed or not depend-
ing on the user needs. It can be used to create websites, manage human resource
(HR), finance, sales, projects and others. Odoo has a client-server architecture
and uses a PostgreSQL database as a management system. Once deployed, we
installed the mail, calendar, contacts, sales, inventory and project applications
in order to test a wide number of options.

1 See https://github.com/odoo/odoo for Odoo’s git repository and issue tracker, in-
cluding a manual with instructions on how to deploy the server and its requirements.



4.2 Procedure

In order to test Odoo with TESTAR a server version of Odoo must first be de-
ployed2. Then TESTAR must be configured by supplying the URL that accesses
the Odoo client and the browser that will be used to launch it. Next, we run
TESTAR in spy mode; this uncovers possible problems with items that may not
be detected well, such as emergent windows. In addition, it helps detecting un-
desired actions that might be performed by TESTAR that may bring problems
such as involuntary file deletion. A number of parameters must also be set up,
which are given in Table 1. With these settings and a first version of the TES-
TAR protocol3 we carried out three iterations of the testing process, improving
the protocol each time so as to remove the problems encountered.

Table 1. Experimental set up. We carried out three iterations involving the five sets.
After each iteration the results obtained were used to refine the TESTAR protocol so
as to better adapt it to the application.

Set Max. actions per run Runs Action Selection Algorithm Parameters

maxReward discount
Q1 1000 30 Q-learning 1 0.20
Q20 1000 30 Q-learning 20 0.20
Q99 1000 30 Q-learning 99 0.50

Q10M 1000 30 Q-learning 9999999 0.95
RND 1000 30 random N/A N/A

4.3 Statistical analysis

We run the Kruskal-Wallis non parametric test on the results for the five sets.
In iteration 3 the test shows that all the metrics have significant differences
among the sets. Running pair-wise comparisons confirms this finding; results for
all sets are given in Figure 1, which shows how random selection can outperform
some of the other sets. This highlights the importance of an adequate choice of
parameters when using Q-learning for action selection.

4.4 Issues encountered

Several issues arose when testing Odoo with TESTAR. The first one relates
to the delays induced by network latency, which is to be expected in any web
application. This can be circumvented via the TESTAR GUI, which allows the
human tester to select the time to wait between actions. In addition, we have

2 See the source install tutorial available from
https://www.odoo.com/documentation/8.0/setup/install.html

3 For more details the reader is referred to the tutorial available from www.testar.org



Fig. 1. Boxplots of the results obtained for 3 metrics in Iteration 3; Q10M beats the
other options for these metrics, coming third in the remaining one (not shown here)

found that Odoo can display confirmation questions in the form of emerging
windows that are not detected as a part of SUT by the accessibility API provided
by Microsoft. This causes TESTAR to fail as it tries to find the SUT but is unable
to, because the emerging window is in the foreground. Also, interactions coded
via the CSS are usually not detected by the API, causing that actions available
in emerging panels get mixed with those in the windows under them, which may
cause the execution of unintended actions.

5 Conclusions

We have shown here the successful application of TESTAR to the automated
testing of the Odoo management software - the first systematic experimenta-
tion of the testing tool to a web application. Two strategies for action selection
were implemented within TESTAR: random and Q-learning. Four metrics were
defined in order to evaluate the performance. Statistical analysis reveals the
superiority of the Q-learning-based method, provided the parameters of the al-
gorithm have been properly selected.

One metric we have not considered in the statistical analysis due to its low
occurrence is the number of failures encountered, shown in Table 2

Table 2. Number of failures encountered per algorithm in the 3rd iteration. These
failures coincide with known issues reported in https://github.com/odoo/odoo/issues

Set Total Failures Unique failures

Q10M 3 1
Q99 0 0
Q20 6 2
Q1 2 1

RND 1 1



Here we can see that although Q20 did not perform so well in the other
metrics, it does on the other hand find the higher number of failures (which
involve stopping the execution and hence having a lesser chance of increasing
the value of other metrics); this must also be taken into account when evaluating
the different algorithms.

Further work will involve exploring three areas. One is related to the im-
provement of the metrics; for instance [5] refers to the lack of correlation between
coverage and faults found, so we need to investigate metrics that are closer to
the latter.

We will also study the possible interest of replacing the current accessibility
API with a more suitable one that better supports dynamic webs. In particu-
lar, we will look at the open source tool Selenium; we think its API Selenium-
WebDriver, www.seleniumhq.org, can help us fix the current problems we have
found when applying TESTAR to web testing. Finally, we will introduce new,
more complex, metaheuristics for action selection, as a substitute for the rela-
tively simple Q-learning algorithm.

Acknowledgments.

This work was partially funded by projects SHIP (SMEs and HEIs in Innova-
tion Partnerships, ref: EACEA/A2/UHB/CL 554187) and PERTEST (TIN2013-
46928-C3-1-R).

References

1. Bauersfeld, S., de Rojas, A., Vos, T.: Evaluating rogue user testing in industry:
An experience report. In: Research Challenges in Information Science (RCIS), 2014
IEEE Eighth International Conference on. pp. 1–10 (May 2014)

2. Bauersfeld, S., Vos, T.E.J., Condori-Fernández, N., Bagnato, A., Brosse, E.: Eval-
uating the TESTAR tool in an industrial case study. In: 2014 ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ESEM
2014, Torino, Italy, September 18-19, 2014. p. 4 (2014)

3. Memon, A.M., Soffa, M.L., Pollack, M.E.: Coverage criteria for GUI testing. In:
Proceedings of ESEC/FSE 2001. pp. 256– 267 (2001)

4. Rueda, U., Vos, T.E.J., Almenar, F., Mart́ınez, M.O., Esparcia-Alcázar, A.I.: TES-
TAR: from academic prototype towards an industry-ready tool for automated test-
ing at the user interface level. In: Canos, J.H., Gonzalez Harbour, M. (eds.) Actas
de las XX Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD 2015). pp.
236–245 (2015)

5. Schwartz, A., Hetzel, M.: The impact of fault type on the relationship between code
coverage and fault detection. In: Proceedings of the 11th International Workshop
on Automation of Software Test. pp. 29–35. AST ’16, ACM, New York, NY, USA
(2016), http://doi.acm.org/10.1145/2896921.2896926

6. Vos, T.E.J., Kruse, P.M., Condori-Fernández, N., Bauersfeld, S., Wegener, J.: TES-
TAR: tool support for test automation at the user interface level. IJISMD 6(3),
46–83 (2015), http://dx.doi.org/10.4018/IJISMD.2015070103


