
Another experience with Test∗ in industry:
automated localisation testing

Mireilla Martinez, Anna I. Esparcia, Urko Rueda, Tanja E.J. Vos, and
Carlos Ortega

Universidad Politecnica de Valencia
Camino de vera s/n, Valencia, Spain

{urueda,mimarmu,aesparcia,tvos}@pros.upv.es
Open Universiteit

Valkerburgerweg 177, Heerlen, The Netherlands
tanja.vos@ou.nl

Indenova
Carrer Dels Traginers 14, Valencia, Spain

cortega@indenova.com
http://www.testar.org

Abstract. Test∗ is a testing tool that automatically and dynamically
generates, executes and verifies test sequences based on a tree model that
is derived from the User Interface through the Accessibility API. Test∗ is
an academic prototype that we continuously try to transfer to companies
to get feedback about its applicability. In this paper we report on one
of these short experiences of using Test∗ in industry at the Valencian
company Indenova.

Keywords: Automated testing, technology transfer, TESTAR

1 Introduction
In previous work we have presented an approach to automated GUI testing
called Test∗1 (Test Automation at the user inteRface level). Test∗ automatically
and dynamically generates, executes and verifies test sequences based on a tree
model (derived from the UI through the Accessibility API). No test cases are
recorded and the tree model is dynamically inferred for every state2, this implies
that tests will run even when the GUI changes. This reduces the maintenance
problem that threatens other GUI testing techniques like Capture and Replay
[2] or Visual testing [1].

The Test∗ tool has been developed in the context of the EU FITTEST project
that finished in 2014. First, it was evaluated in experimental conditions using
different real and complex software applications like MS Office suite (running it
48 hours we detected 14 crash sequences). Subsequently, and with the purpose
of getting a better understanding about the applicability of the tool in an in-
dustrial environment, we continuously try to apply Test∗ in companies to get
1 http://www.testar.org
2 The Graphical User Interface at a particular time

2 Test∗

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

No

Yes

STOP
SUT

optional
instrumentation

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

Domain Experts Action
Definitions

Oracle

SUT

Replayable
Erroneous Sequences

1 2

6

3

4

57

11

Fig. 1. Test∗ testing flow

feedback about its applicability and help companies to obtain solutions to the
problems they face. In [3] results are described of transferring and evaluating
the tool within 3 different companies on 2 desktop applications and one web ap-
plication. In this paper we report on yet another short experience of using Test∗
in industry at the Valencian company Indenova3. This experience was done as
a micro initiative within the SHIP project and the Software Testing Innovation
Alliance4.

2 Test∗

Test∗ performs the steps as is shown in Fig. 1: (1) start the SUT (System Under
Test); (2) obtain the GUI’s State (a widget tree5); (3) derive a set of sensi-
ble actions that a user could execute in a specific SUT’s state (i.e. clicks, text
inputs, mouse gestures); (4) select one of these actions (random or using some
search-based optimization criteria); (5) execute the selected action; (6) apply the
available oracles to check (in)validness of the new UI state. If a fault is found,
stop the SUT (7) and save a re-playable sequence of the test that found the fault.
If not, keep on testing if more actions are desired within the test sequence.

Using TESTAR, you can start testing immediately and you do not need to
specify test cases in advance. TESTAR automatically generates and executes
test sequences based on a structure that is automatically derived from the UI
through the accessibility API. Without specifying anything, TESTAR can detect
the violation of general-purpose system requirements through implicit oracles like
those stating that the SUT should not crash, the SUT should not find itself in
an unresponsive state (freeze) and the GUI state should not contain any widget
with suspicious words like error, problem, exception, etc.
3 www.indenova.com/
4 www.innovationalliance.eu
5 Test∗ uses the Operating System’s Accessibility API, which has the capability to
detect and expose a GUI’s widgets, and their corresponding properties like: display
position, widget size, ancestor widgets, etc.

A short experience with Test∗ in industry 3

This is a very attractive feature for companies because it enables them to
start testing immediately and refine the tests as we go.

3 Indenova and the SUT eSigna
Indenova is a Valencian ICT company that provides ERP (Enterprise Resource
Planning) solutions for companies. Their initial clients are based in Spain. But
throughout the years, Indenova has gained new clients in Latin America. Test-
ing at Indenova is mainly done manually and basically is done at the system
acceptance test level. Written requirements are used for the design of system
test suites. They would like to have more tests automated, but currently in the
company there is a lack of time and people with knowledge about test automa-
tion.

Becoming aware of Test∗ Indenova is very interested to see how they can start
test automation, so they provided access to their eSigna product. This System
Under Test is a web portal from which several services are available and enable
users to perform specific processes inside their organisations. Thus, eSigna is a
base component in which concrete services can be plugges-in as required by each
particular project. Those services are independent from each other, but they are
interconnected to share information in real time.

4 The industrial experience
During the investigation we have measured the following effectiveness and effi-
ciency aspects of the setup, development and testing of Test∗:

1. Number of failures observed after executing the Test∗ on eSigna
2. Time needed to set-up the test environment and get everything running
3. Lines Of Code (LOC) and time needed for error definition, oracle design,

action definition and design of stopping criteria.
4. Time for running the Test∗ tool

The project has been carried out in a fashion that allowed us to perform
iterative development of Test∗. The process included the following steps which
were repeated several times to yield the final setup:

1. Planning: Implementation of Test Environment, consisting of planning and
implementing the technical details of the test environment for Test∗, as well
as the anticipating and identifying potential fault patterns in the Error Def-
inition.

2. Implementation: Consisting of implementing the Test∗ protocol consisting
of: Oracles to implement the detection of the errors defined in the previous
step; Action Definition to define the action set from which Test∗ selects;
and the Implementation of stopping criteria that determine when sufficient
testing has been done by Test∗.

3. Testing and Evaluation: Run the tests.

4 Test∗

4.1 Planning the testing: what do we want to test

One of the immediate problems that Indenova faces with eSigna fits exactly with
the Test∗ capabilities. As indicated the initial clients from Indenova were from
Spain, but gradually they have expanded to Spanish speaking South American
countries. One of the problem encountered is that there are differences between
the Castilian Spanish spoken in Spain and the different Latin American Spanish.
Although it is not a problem of not being able to understand what is meant,
some of the clients from Columbia and Peru just have complained about the
usage of Castilian words. For example:

English Spain Latin America
Mobile phone Móvil Celular
Holiday Festivo Feriado
Computer Ordenador Computadora

Since the implementation is not based on dictionaries and the Castilian Span-
ish is hard-coded, there is no other way than test the application to find the words
that need to be changed for the other countries. This is a tedious and boring
job.

4.2 Implementing the Test∗ protocol

Test∗ has the flexibility to adapt its default behaviour for specific needs. We
will describe next how did we setup the tool to automatically verify localisation
problems on eSigna product:

1. Set eSigna activation - it will tell Test∗ how to start/run the application.
Being a web application, it consists of a command line BROWSER URL
where BROWSER is the path and executable of an available web browser (i.e.
Internet Explorer) and URL the entry point for the eSigna web application.

2. Set test algorithm - as we would like to verify any potential localisation issues
around the target product’ UI, we changed the default random algorithm to
a more proper search based optimisation criteria that would better explore
the SUT UI space.

3. Set suitable actions - from the space of candidate actions that the user could
perform over the product UI we are interested in 1) actions that will enable
an automatic login to eSigna and 2) actions which are not interesting for our
localisation verifying objective (i.e. web browser actions, a logout button, an
administration panel in eSigna, etc.)

4. Set localisation oracles - verifying the localisation correctness of eSigna for a
target language can be straightforward performed by defining a list of taboo
words that should not appear in the UI. This list can be easily defined in
Test∗ UI through Java regular expressions (i.e.
.*[mM][óo]vil.*|.*[fF]estivo.*|.*[oO]rdenador.*).

5. Set the stopping criteria - we might choose between a fixed time for execution,
a fixed length for UI executed actions or use a more suitable stopping criteria.

A short experience with Test∗ in industry 5

We made use of the Test∗ test protocol to define a more proper stopping
criteria for eSigna verification (check next point). It will account for the UI
space exploration and stop when no more space is being explored.

6. Advanced test protocol setup - this protocol is a Java class composed of a
method for each task in the testing cycle presented in figure 1. Concretely,
we implemented the automated login inside the task START SUT, non-
interesting actions filtering inside the task DERIVE SET OF USER AC-
TIONS and the stopping criteria in the more actions? check point.

Once Test∗ was setup for automated localisation verification we just had to
wait for the tool test reports. Following the testing flow of Test∗ it would first
activate eSigna, perform an automated login and repeat a cycle of <select and
execute action, verify localisation problems, check stopping criteria>.

4.3 Testing and Evaluation

Our context multilingual scenario consisted of one target language, Latin Amer-
ican as this was the first concern on eSigna testing with Test∗. We account in
table 1 (LOC = Lines Of Code; time in minutes) for metrics that measure the
effort required for our solution on automated verification of localisation issues.

Setting up Test∗ for eSigna is an easy process that consists on providing
the command line that would activate the product. Actions configuration would
require some effort though as we would like Test∗ to perform automated tests
without user intervention. Thus, we first need to analyse eSigna authentication
process to provide the proper actions once the product has been activated. Ad-
ditionally, we wanted to maintain our tests in relevant UI parts of eSigna, for
example disabling/filtering non interesting actions like closing the browser, login
out of eSigna, etc. Yet, 35 lines of code and 10 minutes were enough for Test∗ to
perform automated tests over eSigna. We acknowledge that future enhancements
on Test∗ would enable a more efficient configuration of actions (we used version
1.1a of the tool).

Table 1. Efficiency (time in minutes)

Setup Actions Oracles Stop criteria Test run
time LOC time LOC time LOC time time actions

1 35 10 0 5 9 2 60 100

Oracles did not require any lines of code, but just a regular expression with
the full list of unwanted localised product words (e.g. Móvil, Festivo, Ordenador).
We defined a regular expression for a list of more than 30 words that were most
issued by the Latin American community. The company was aware of 2 particular
words that were incorrectly localised.

The stopping criteria was easily implemented looking to the UI space explo-
ration. We forced to stop the tests when no more space was being explored by
the last 100 executed actions.

6 Test∗

Finally, we observed that revealing the 2 wrongly localised words in eSigna,
initially notified by Indenova, was reported fast by Test∗ (in the first 5 minutes
of execution). Other words were not reported, but Indenova indicated that such
words were not part of the product. We also observed that new UI space was
explored after an hour of execution, which could reveal additional issues in the
localised product. We expect a direct relation between the UI space exploration
(coverage) and the effectiveness achieved on localisation verification of software
products.

5 Conclusions and further work
We have presented a short experience of transferring an academic prototype
from the university, for testing software applications at the UI level, to the
industry. Indenova is a Valencian ICT company that provides ERP solutions to
other companies. We applied the prototype Test∗ for testing localisation issues
in eSigna product, which targets the Latin American countries.

The automation level achieved by the prototype and its potential for testing
software products made Indenova consider the integration of Test∗ into their
testing processes. They used the prototype for performing smoke testing, which
would provide early feedback of the quality of developed product versions.

As further work, we will improve localisation testing in the prototype by
including dictionaries. We would also like to further investigate the effectiveness
of the presented localisation testing solution.

Acknowledgement
This work was partly funded by the SHIP project (EACEA/A2/UHB/CL 554187)
and the PERTEST project (TIN2013-46928-C3-1-R). Test∗ was funded by the
EC within the context of the FITTEST project, ICT-2009.1.2 no 257574 (2012-
2015).

References

1. E. Alegroth, M. Nass, and H.H. Olsson. Jautomate: A tool for system- and
acceptance-test automation. In Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on, pages 439–446, March 2013.

2. Bao N. Nguyen, Bryan Robbins, Ishan Banerjee, and Atif M. Memon. Guitar: an
innovative tool for automated testing of gui-driven software. Autom. Softw. Eng.,
21(1):65–105, 2014.

3. Tanja E.J. Vos, Peter M. Kruse, Nelly Condori-Fernández, Sebastian Bauersfeld, and
Joachim Wegener. Testar: Tool support for test automation at the user interface
level. Int. J. Inf. Syst. Model. Des., 6(3):46–83, July 2015.

