
Visualization of automated test results obtained
by the TESTAR tool

Urko Rueda, Anna I. Esparcia-Alcazar, and Tanja E.J. Vos

Research Center on Software Production Methods (PROS)
Universitat Politècnica de València

Camino de vera s/n 46022, Valencia, Spain
{urueda,aesparcia,tvos}@pros.upv.es

http://www.testar.org

Abstract. Bigger and more complex software systems demand qual-
ity practices that are seldom carried out in real industry. A common
practice is to provide a post-release maintenance service of products to
correct defects reported by the end user. In previous work we presented
TESTAR, a technology-agnostic tool for automated testing of applica-
tions from their GUI. Here we introduce state-transition graph models
derived from TESTAR test results as a tool for visualisation of what has
been tested, to which extent and which software defects were found. We
discuss how such models enable to perform quality assessment of soft-
ware products by inspecting and debugging the system behaviour from
the GUI perspective. This constitutes a step forward in aid of software
developers and testers, since the User Interface is commonly the means
end-users encounter potential software defects.

Keywords: Automated Testing, User Interface Models, Quality Assess-
ment, Visualization

1 Introduction

Visualisation is a historical mechanism that contributes to human understanding
of large sets of information. From city, bus and metro maps to UML models
for software design, presentation slides to communicate to attendees, hardware
resources graphs to display their usage by different applications processes, the
list is numerous. In computer science it does not matter how smart a system
could be, human control is still critical in most scenarios, including software
design and software testing.

In previous work we presented TESTAR [8] and its successful application to
various industrial systems [9]. TESTAR is capable of automated test generation
and executes test cases based on a tree model that is automatically derived
from the application’s GUI through accessibility API technologies. Since this
structure is built automatically during testing, the GUI is not assumed to be
fixed and tests still run even when the GUI has been modified. This reduces the
maintenance problem that threatens most current state-of.the-art approaches in
GUI testing, like Capture-Replay [26, 24, 14, 15, 11] and Visual Testing [29, 3].



II

Fig. 1. TESTAR testing cycle

The TESTAR tool [25] carries out automated testing, Figure 1, on the SUT’s
GUI by deriving sets of possible actions for each state that the GUI is in, and
automatically selecting and executing appropriate ones until a stopping criteria
is reached. A tester can take full control of tests, by modifying a TESTAR default
provided testing protocol which enable to establish the stopping criteria, which
actions are available from the GUI, oracles, etc. Oracles are used to detect faulty
behaviour when a system crashes or freezes. Besides these simple,“free” oracles,
the tester can easily specify regular expressions that detect patterns of suspicious
titles in widgets that might pop up during the execution. For more sophisticated
and powerful oracles, the tester can enrich the default TESTAR (Java-based)
protocol that is used to drive the tests.

SUT GUI states are computed as the set of hierarchical widgets (user in-
terface elements) that conform its GUI, called widget trees in TESTAR. These
widget trees are gathered through the Operating System’s Accessibility API, an
assistive technology that has the capability to detect and expose the GUI wid-
gets and their corresponding properties1.To illustrate the concept, the left part
of Figure 2 shows the GUI of a very simple application, with its corresponding
widget tree on the right. It has a titlebar (with text Example), a menu bar, a
button, a text-field and a slider. It also includes an example of actions that could
be performed by the user: dots for clicks, ABC text for text-input, arrows for
drag&drop operations in the slider.

TESTAR has been deployed in various industrial environments [25], which
has allowed us to receive feedback from the end users. Companies have been
keen to take up TESTAR, yet they would appreciate a visualisation aid in order
to see what has happened and what has been tested. We are also aware such
an aid would enable us to debug testing performance, check which parts of the
application GUI were exercised, and how TESTAR achieved to crash or reveal
software defects.

1 Such as display position, widget size, ancestor widgets, etc.



III

Fig. 2. An example GUI state (left) and its corresponding widget tree (right)

Here we present the results of our work on visualisation of the TESTAR
outputs. The functionality described in the paper is already supported by the tool
(https://github.com/STaQ-PROS-UPV/TESTAR). Section 2 gives an overview
of related work in the area. Section 3 introduces the main contribution of this
paper, namely the TESTAR graphical models, including a description of how
they can be used for quality assessment. Finally, in section 4 we present some
conclusions and outline areas for future work.

2 Related work

Model extraction using dynamic GUI crawling is a popular research topic when
adopting model-based testing (MBT). It addresses the challenge of the effort
and expertise required on crafting the application models. In [5] an overview
is given of the existing body of knowledge on GUI testing, showing that 52%
of the studied papers were about Model-Based GUI Testing approaches. It was
found that the models that were mostly used to generate tests were Event Flow
Graphs (EFG) and Finite State Models (FSM). Moreover, most approaches are
limited to specific programming language environments.

Work related to EFG models has mostly been carried out by the GUITAR
team [23] and is based on reverse engineering (called ripping [18]) of a EFG
GUI model that represents all possible interaction sequences with the GUI wid-
gets. Such a model is then used for test case derivation. GUITAR (available at
http://guitar.sourceforge.net/wiki/index.php) was initially developed for Java
applications, but extensions have been made for iPhone, Android and Web ap-
plications. Murphy Tools [1, 2] is a GUI Driver tool based on GUITAR, that
presents a dynamic reverse engineering tool for Java GUI applications, and an
iterative process of manually providing valid input values and automatically im-
proving the created state-models. Murphy Tools automatically extracts models
of the GUI of applications as the user interacts with them. Then, the models are



IV

used to drive testing. This approach differs from TESTAR in two ways. First,
the manual work required to exercise the applications for models population.
Secondly, tests are guided by the extracted models. The effectiveness of the tests
would rely directly on the goodness of extracted models. In contrast, TESTAR
approach performs automated testing without the need of models. It is true that
models are still extracted and, what is more, the models can be applied for more
intelligent testing (i.e compared to randomly selecting GUI actions) when GUI
space exploration is a main concern.

FSM models are used in [16] where tests are generated for AJAX applications
using Hill-Climbing and Simulated Annealing on an approximate model that is
obtained from the applications Document Object Model tree. [20, 21] present a
tool called Crawljax that uses dynamic analysis to construct a FSM of an AJAX
application using web crawling, from which a set of test cases is generated.
WebMate [10] is another model extractor for web applications. It extracts a so-
called a usage model, a graph where nodes correspond to states of the application
and a transition represents a single interaction with the application. In [19]
we can find automated crawling of web applications’ models. They focus on
Javascript and DOM to dynamically analyse candidate events to perform on the
GUI and that would change the application state. Yet, in contrast to TESTAR,
the tester does not have control over the events that would be interesting to
perform. This is mainly because such approaches are focused to craft a model
of the application, while TESTAR seamlessly drives testing on tester controlled
testing protocol.

In [22] an FSM based approach is presented called GUI Test Automation
Model (GUITam) for constructing the state models by dynamic analysis. The
GUITam Runner works for C++ applications.

With the increased availability of mobile platform applications in our daily
life there is a trend to switch testing from traditional desktop platform to the
mobile context. In [28] static analysis is combined with dynamic GUI crawling to
test Android applications. They use static analysis of the application source code
to extract the actions supported by the GUI of the application. Next, they use
dynamic crawling to build a FSM of the application by systematically exercising
the extracted events on the live application. They compare their approach to
the Android version of GUITAR.

The iCrawler tool [13] is a reverse engineering tool for iOS mobile applications
that also uses an FSM.

Other types of models are used too. In [4] a so-called GUI tree is used as a
model to perform crash testing on Android mobile apps (the nodes represents
user interfaces of the app, while edges describe event-based transitions). Similar
to [20], the model is obtained by a so-called GUI-Crawler that walks through
the application by invoking the available event-handlers with random argument
values. From the GUI-tree test cases are obtained by selecting paths starting
from the root to one of the leaves. The application under test is instrumented
to detect uncaught exceptions that would crash the app. Morgado et al. present



V

ReGUI tool [12] that uses dynamic analysis to generate Spec# and GraphML
GUI models to test windows applications.

In [17] a tool called AutoBlackTest is presented that does dynamic analysis
for model extraction and test suite generation for GUI applications. The tool uses
IBM Rational Functional Tester (RFT) to extract the list of widgets present in
a given GUI, to access their state and to interact with them. RFT supports a
range of technologies to develop GUIs and offers a programmatic interface that is
independent from the technology used to implement the GUI of the application
under test.

Maintenance is one of the major drawbacks when using capture & replay
tools, as changes to the user interface can result in laborious manual adaption
work. Therefore, approaches to automating test suite maintenance [11] become
crucial. In this line, work by Leotta et al. e.g. focuses on making existing ap-
proaches more robust to changes to the application [15]. Sun and Jones perform
analysis of the underlying application programmable interface (API) in order to
generate GUI tests [27].

3 TESTAR State-Transition Graphs

TESTAR testing cycle iterates a pair of action selection and execution for each UI
state the SUT is in. Each UI state is represented by an unique identificator, and
each action from that concrete state is also represented by an unique identifier.
TESTAR populates the graphs by pairs of state-ID and action-ID as actions are
being executed in a test sequence. A TESTAR graphing utility retrieves such
pairs of states and actions and populates the test graphs.

To be able to visualise TESTAR test runs, we have defined the TESTAR
State-Transition Graph, in which each node represents a unique GUI state and
has an associated unique state identifier. The graph edges, which have an associ-
ated unique action identifier, represent a state transition caused by a user-action,
such as left/right clicks, text input and drag&drop operations. An example is
given in Figure 3, which shows a fragment of the corresponding TESTAR State-
Transition Graph Model for a test run.

Each node contains a label xxx (y), where xxx represents the state identifier
and y the number of times the state was traversed on a test execution. Similarly,
labels for actions include identifier, number of repetitions and an extra parameter
between square brackets which indicates the action sequence number in the test
execution. In this way we have the ability to explore the executed test action by
action. We discuss the quality assessment of applications in Section 3.5.

Nodes2 and links in dashed lines, which include the label unexplored, refer to
actions that are available from a given GUI state, but that were not executed
during a test. The number of actions that were not executed appears between
brackets.

2 The number following the label unexplored within nodes merely refers to the count
of states not fully explored



VI

Fig. 3. Fragment of the TESTAR graph (tiny) for a 99-action test sequence for Win-
dows calculator

3.1 Unique identifiers for states and actions

TESTAR reports test runs as a sequence of actions, each of which is a transition
from two GUI states that might be the same (the GUI does not change) or
different (the action produced an GUI change). Providing unique identifiers to
those states and actions could potentially help in the inspection and analysis
of test results. Several applications can be think of: quick search and jump to
concrete states and actions by their unique id, cross test run matching were a
state from test run X can be localised into a test run Y, etc. In the end, we
believe these identifiers are essential to support debugging when there is a need
to jump into concrete states and actions.

To make states and actions uniquely identified even across different runs of
the SUT, we need to assign a unique and stable identifier to each state and
action. TESTAR allows us to derive the complete GUI state of the SUT (i.e.
the widget tree as explained in Section ??), so that we can inspect the property
values of each visible widget. For instance, it gives access to the title of a button,
its position and size and tells us whether it is enabled. This gives us the means
to create a unique identifier for a click on that button: It can be represented
as combination of the button’s property values, like its title, help text or its
position in the widget hierarchy (which parents / children the button has). The
properties selected for the identifier should be relatively “stable”. The title of a



VII

window, for example, is quite often not a stable value (opening new documents
in Word will change the title of the main window) whereas its tool tip or help
text is less likely to change.

Each action type (i.e. a click or a keystroke) may have parameters. For ex-
ample, a click action has two parameters: the button (i.e. left or right) and the
clicking position (x and y coordinates). The action identifier used for the graph
link takes parameters into account. Hence, the action that types the text foo
will have a different identifier than the action that types boo. What is more, the
identifier also depends on the state the action is performed. This approach will
enable to precisely locate an action in the graph by its unique identifier. The
same approach can be applied to represent GUI states: one simply combines the
values of all stable properties of all widgets on the screen.

3.2 Reusing the TESTAR graphs

TESTAR GUI models are state-transition diagrams/graphs described with plain
text graph description language (DOT), which makes them reusable by third
party tools. The DOT format is illustrated in the following sample code.

digraph DOT { rankdir=LR;

START [shape=point, height=0.3, style=solid, color=black];

START -> state_1;

state_1 -> state_2 [label="transition"];

state_2 -> state_2 [label="loop"]; state_2 -> END; }

It mainly consists of links between nodes, e.g. transition from state 1 to state
2; graphical properties can be set for different graphical representations.

The rationale behind using this simple dot format is that it offers enough
capabilities for the representation of the UI test sequences from the perspective
of acquiring an overview of the execution. Node labels can be applied to UI states
identifiers and link labels to state’ actions identifiers. The graphical properties
of the dot format would also enable to remark special characteristics of the
test sequences, as for example a varying color to indicate a higher repetition of
certain actions. At a glance, the colors would be indicators of how much were
the different parts of the UI exercised.

3.3 Test results graphs

TESTAR graphs comes in three varying details: minimal, without states and
actions identifiers, tiny, which incorporates identifiers to the minimal version
and screenshoted, which embeds GUI screenshot to states and GUI action target
screenshot to transitions.

A minimal detailed version will help improve visualisation and get an overview
of the SUT GUI space explored by a test sequence; an example of this can be
found in Figure 4. This is done by removing the identifiers from states and ac-
tions, and the order of actions in the test which happen to crowd the graphs



VIII

Fig. 4. Windows calculator TESTAR Graph (minimal) for 99 actions test sequence

with too much information for a simple overview of the complete test sequence.
This is indeed more crucial the bigger the graphs are.

For a regular tiny version, the graphs provide enough information to search
and identify the states and actions from test runs. The order, between brackets,
in the actions enable to trace a test run action by action. This version is less
readable than the minimal one due to the extra information displayed, but will
enable to debug and match a test run to its corresponding GUI state-transition
graph.

TESTAR also keeps a screenshot-version of the graphs, see Figure 5, that
can be directly used for test documentation. Embedding the GUI screenshots
for graph states and actions GUI target screenshots (e.g. the widget screenshot
for a button click) provides more meaningful information about test runs. It allow
to read which GUI states were exercised by a test run and the SUT behaviour
after each executed action.

3.4 Abstracting the graphs

Some actions tend to populate the graphs almost to infinite, which would be
problematic for graph visualisation due to their large extension. For example,
a text-field widget might accept any kind of text input, which translates into
nearly infinite ways of populating the text-field. The corresponding graph would
consist of a different state for each different text input: stateX, input-a, state-a,
input-b, state-b, ..., input-n, state-n. In this concrete sequence, if we start at
state X, giving the input ”a” for a text field will end in the state b, and so
on with the input ”b” to input ”n”. To avoid such expansion of the graph and
maintain it more scalable, we present next an abstraction mechanism.

We have shown above how the graph states and actions identifiers are com-
puted to uniquely identify them. States consider the widget properties Role,
Title and Shape, while actions do take into account the GUI state from which
it is performed and its event parameters (i.e. some text in a typing action).



IX

Fig. 5. Windows calculator TESTAR Graph (screenshot) for 99 actions test sequence

We can achieve abstraction by recoding the identifiers. Abstract state identi-
fiers are computed by only considering the Role property of a widget. Thus, we
can abstract the GUI by looking into its widgets hierarchy and widget types.
For actions, the abstract identifier is calculated by discarding event parameters,
concretely mouse position and typed texts. For the former, in the example, a
left/click mouse action is performed at a fixed coordinate (the mouse position),
but we are only interested on the action type (thus, ignoring the coordinates).
For the latter, typing some text is abstracted ignoring what is typed.

Then, each unique state and action has an associated abstract identifier (a
cluster of states or actions respectively) that enables TESTAR to cluster the
graphs, collapsing states and actions into a simpler representation of the GUI
model. Clusters are reported together with graphs, for example (cluster uses the
abstract identifier):

Cluster (5) 1151628151 contains:

(1) n1626056442 (2) 1669305354 (3) n86735519

We would like to remark that the current version of TESTAR screenshot
version of the abstracted graphs are merely illustrative because each abstracted
state and action is the combination of many states and actions, respectively. The



X

combination of several screenshots into a single abstracted screenshot is out of
the scope of this paper. However, we can jump into the non-abstracted graphs
to get a precise scenario of states and actions for our test sequence.

3.5 An example of application: quality assessment

The TESTAR approach aims to automate testing in industry, independently of
the size and complexity of applications and the technology underneath. Such
a technology-agnostic automation approach needs to be largely independent of
the source code, especially as companies are reluctant to share their source code
and are not keen on instrumentation or injection. Consequently, we need to
complement our approach with quality metrics that are also independent of the
source code. This way we can provide industry with quality indicators about
the testing activities done with TESTAR. Being aware of the extent at which
our software applications are being tested, it can provide and indicator of how
reliable we could expect our software to be. While traditional testing provides
metrics on code coverage and mutation metrics, indicators of how much of the
code was exercised, a technology-agnostic black-box (testing outside the code or
binary) testing approach like TESTAR requires alternative approaches to report
the extent at which software are exercised/stressed.

The TESTAR graphing utility presented in this paper provides SUT GUI
space exploration metrics. It reports, every X actions, on the number of unique
and abstracted states and actions that were traversed/executed during a test.
For example, a test run of 50 actions with a sampling every 10 actions may
report the next exploration curve data:

________________UNIQUE ________ABSTRACT ___________TOTAL

#, states, actions, states, actions, unique, abstract

1, 4, 10, 2, 2, 14, 4

2, 7, 20, 3, 3, 27, 6

3, 13, 30, 5, 6, 43, 11

4, 16, 40, 6, 7, 56, 13

5, 22, 50, 6, 7, 72, 13

Additionally, TESTAR also reports the number of states for which there
were discovered actions that were not explored/executed. The corresponding
test report of the previous exploration curve data would include metrics for
unexplored states and actions and a test verdict (PASS or FAIL):

_____________________________STATES

total, unique, abstract, unexplored (with unexplored actions)

51, 22, 6, 21 (total = # actions + 1)

____________________________ACTIONS

total, unique, abstract, unexplored (discovered but unexecuted)

50, 50, 7, 638



XI

____________TOTAL

unique, abstract, ... VERDICT

72, 13, ... PASS

Looking to this sample metrics we can make several observations. First, the
exploration curve indicates how fast a test sequence is exploring the UI of the ap-
plication. The last 10 executed actions does not increase the number of abstract
states and actions explored (6 and 7 respectively). It could suggest a possible
stopping criteria of the test sequence when we want to broad exercise the UI of
the application. In contrary, the last 10 actions also suggest that a specific part
of the UI is being stressed. This might be also interesting to discover faults that
may arise by hard stressing a concrete part of the UI.

Secondly, the unexplored states and actions metrics provide indicators of
un-exercised parts of the UI. Again, this may contribute to decide on the tests
stopping criteria. The ideal testing would continue until no unexplored states or
actions are reported. Yet, the screenshot version provides information on which
unexplored UI parts should be further tested.

A TESTAR graph, from an executed test, depicts which SUT GUI states
are reached by concrete actions. It provides (specially the screenshot versions)
a straightforward documentation of how our system behaves. Most importantly,
this documentation can be obtained automatically as soon as a new product
version is available for testing. The graph will sketch how exactly the system re-
acts to user actions. The feedback received from our industrial partners indicates
that this is a good way to proceed with test quality reporting in TESTAR.

4 Conclusions

TESTAR is a technology-agnostic automated testing solution that enables anal-
yses of the quality of software from their GUI through a customised tester testing
protocol, which enable to control which actions can be performed on the GUI,
which actions should be executed and how to detect defects or suspicious be-
haviour through implementing SUT specific oracles.

In this paper we have presented an approach to visualisation that enables
TESTAR to provide visual information of test runs. Test visualisation helps
testers to directly inspect and analyse how the SUT was exercised in the search
of potential failures. Without this feature we will only know whether a test
pass or fails and, if reported, the raw sequence of actions that were performed.
However, raw actions force to reproduce them in the GUI to check what was
executed. Mechanisms to visually check how the tests performed are helpful
if we want to get a deep insight of how the SUT was tested and what made
a SUT to reveal a failure. In this line, TESTAR screenshoted graphs enable
to inspect and analyse the tests. Even more, these graphs can be used as test
documentation, from which human testers might perform manual tests (e.g. for
failure reproducibility) Other than testers, developers can also benefit from this



XII

information which makes them aware of concrete test sequences that break the
SUT. TESTAR is also able to measure the size and complexity on GUI basis
based on the number of GUI states and transitions explored by test runs. We
have also introduced how to assess the quality of software products looking into
the reported data and graphs models.

We are confident that TESTAR will help software industry to adopt test-
ing automation and that it will enable to reduce the maintenance costs on new
software releases. TESTAR is not oriented to update test artifacts, but to keep
a working testing protocol (i.e. widgets/actions recognition, oracles) that will
yet run on new releases. However, we are aware that there is still manual work
to perform, the most critical part being the oracles definition. We foresee that
oracles should be a new trending topic in testing development that will be mixed
into the traditional software development methodologies. For example, a SUT
working with a database should provide the mechanisms to check the data con-
sistency: a) in the database itself, b) in the data sent from the SUT to the
database and c) in the data retrieved from the database to the SUT GUI.

We are aware that one potential problem with our visualisation approach
stems from the fact that bigger systems would produce bigger graphs with a
higher amount of nodes/states. This is a critical scalability problem, specially
on screenshoted versions of graphs, that could potentially introduce technical
difficulties for inspecting and assessing the models. Addressing this potential
problem is left for future work. Yet, our plan is to break the graphs into small
interconnected portions. Each portion could be associated with concrete portions
of the whole application GUI. We have already worked with graphs comprising
of more than 250 abstract states and more than 500 abstract actions, due to
test sequences of 5000 actions over the windows calculator. Although the graphs
are big, we can easily jump to interesting parts by searching the identifiers of
states and actions. More advanced inspecting features will be also incorporated
(e.g. state centered re-graphing, displaying the closest interconnected states and
actions).

Finally, we acknowledge that the TESTAR approach relies on the applica-
tions accessibility compliance, as TESTAR makes use of the platform native
Accessibility API to retrieve the widget-trees presented in this paper. However,
we expect to address the issue by supplying specific drivers that provides appli-
cation widget-trees and events handling. We have already succeed on this line
by supporting the Android platform for mobile phones.

An empirical evaluation of the visualization approach is also left for a con-
sequent publication.

5 Acknowledgement

This work was partly funded by FITTEST project, ICT-2009.1.2 no 257574,
SHIP project (EACEA/A2/UHB/CL 554187) and the PERTEST project (TIN2013-
46928-C3-1-R).



XIII

References

1. Aho, P., Menz, N., Rty, T., Schieferdecker, I.: Automated java gui modeling
for model-based testing purposes. In: Information Technology: New Generations
(ITNG), 2011 Eighth International Conference on. pp. 268–273 (April 2011)

2. Aho, P., Suarez, M., Kanstren, T., Memon, A.: Murphy tools: Utilizing extracted
gui models for industrial software testing. In: The Proceedings of the Testing:
Academic & Industrial Conference (TAIC-PART). IEEE Computer Society (2014)

3. Alegroth, E., Nass, M., Olsson, H.: Jautomate: A tool for system- and acceptance-
test automation. In: Software Testing, Verification and Validation (ICST), 2013
IEEE Sixth International Conference on. pp. 439–446 (March 2013)

4. Amalfitano, D., Fasolino, A., Tramontana, P.: A gui crawling-based technique for
android mobile application testing. In: Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2011 IEEE Fourth International Conference on. pp.
252–261 (March 2011)

5. Banerjee, I., Nguyen, B., Garousi, V., Memon, A.: Graphical user interface (gui)
testing: Systematic mapping and repository. Information and Software Technology
(2013)

6. Bauersfeld, S., Vos, T.E.J.: User interface level testing with TESTAR; what about
more sophisticated action specification and selection? In: Proceedings of the Sev-
enth Seminar on Advanced Techniques and Tools for Software Evolution, SATToSE
2014. pp. 60–78 (July 2014)

7. Bauersfeld, S., Wappler, S., Wegener, J.: A metaheuristic approach to test se-
quence generation for applications with a GUI. In: Proceedings of the Third In-
ternational Symposium on Search Based Software Engineering (SSBSE 2011). pp.
10–12 (September 2011)

8. Bauersfeld, S., Vos, T.E.J.: Guitest: a java library for fully automated gui robust-
ness testing. In: Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering. pp. 330–333. ASE 2012, ACM, New York, NY,
USA (2012), http://doi.acm.org/10.1145/2351676.2351739

9. Bauersfeld, S., Vos, T.E.J., Condori-Fernández, N., Bagnato, A., Brosse, E.: Eval-
uating the TESTAR tool in an industrial case study. In: 2014 ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ESEM
2014, Torino, Italy, September 18-19, 2014. p. 4 (2014)

10. Dallmeier, V., Pohl, B., Burger, M., Mirold, M., Zeller, A.: Webmate: Web applica-
tion test generation in the real world. 2014 IEEE Seventh International Conference
on Software Testing, Verification and Validation Workshops 0, 413–418 (2014)

11. Grechanik, M., Xie, Q., Fu, C.: Maintaining and evolving gui-directed test scripts.
In: Proceedings of the 31st International Conference on Software Engineering.
pp. 408–418. ICSE ’09, IEEE Computer Society, Washington, DC, USA (2009),
http://dx.doi.org/10.1109/ICSE.2009.5070540

12. I.Morgado, Paiva, A., Faria, J.: Dynamic reverse engineering of graphical user
interfaces. Int. Journal on Advances in Software 5(3 and 4), 224–246 (2012)

13. Joorabchi, M., Mesbah, A.: Reverse engineering ios mobile applications. In: Reverse
Engineering (WCRE), 2012 19th Working Conference on. pp. 177–186 (Oct 2012)

14. Kaner, C.: Avoiding shelfware: A managers view of automated gui testing.
http://www.kaner.com/pdfs/shelfwar.pdf (2002)

15. Leotta, M., Clerissi, D., Ricca, F., Spadaro, C.: Comparing the maintainability
of selenium webdriver test suites employing different locators: a case study. In:



XIV

Proceedings of the 2013 International Workshop on Joining AcadeMiA and Indus-
try Contributions to testing Automation. pp. 53–58. JAMAICA 2013, ACM, New
York, NY, USA (2013), http://doi.acm.org/10.1145/2489280.2489284

16. Marchetto, A., Tonella, P.: Using search-based algorithms for ajax event sequence
generation during testing. Empirical Software Engineering 16(1), 103–140 (2011),
http://dx.doi.org/10.1007/s10664-010-9149-1

17. Mariani, L., Pezzè, M., Riganelli, O., Santoro, M.: Autoblacktest: A tool for au-
tomatic black-box testing. In: Proceedings of the 33rd International Conference
on Software Engineering. pp. 1013–1015. ICSE ’11, ACM, New York, NY, USA
(2011), http://doi.acm.org/10.1145/1985793.1985979

18. Memon, A., Banerjee, I., Nguyen, B., Robbins, B.: The first decade of gui ripping:
Extensions, applications, and broader impacts. In: Proceedings of the 20th Working
Conference on Reverse Engineering (WCRE). IEEE Press (2013)

19. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling AJAX-based web applica-
tions through dynamic analysis of user interface state changes. ACM Transactions
on the Web 6(1), 1–30 (2012)

20. Mesbah, A., van Deursen, A.: Invariant-based automatic testing of ajax user in-
terfaces. In: Proceedings of the 31st International Conference on Software Engi-
neering. pp. 210–220. ICSE ’09, IEEE Computer Society, Washington, DC, USA
(2009), http://dx.doi.org/10.1109/ICSE.2009.5070522

21. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling ajax-based web applications
through dynamic analysis of user interface state changes. ACM Trans. Web 6(1),
3:1–3:30 (Mar 2012), http://doi.acm.org/10.1145/2109205.2109208

22. Miao, Y., Yang, X.: An fsm based gui test automation model. In: Control Au-
tomation Robotics Vision (ICARCV), 2010 11th International Conference on. pp.
120–126 (Dec 2010)

23. Nguyen, B.N., Robbins, B., Banerjee, I., Memon, A.: Guitar: an innovative tool
for automated testing of gui-driven software. Automated Software Engineering pp.
1–41 (2013)

24. Nguyen, B.N., Robbins, B., Banerjee, I., Memon, A.M.: Guitar: an innovative tool
for automated testing of gui-driven software. Autom. Softw. Eng. 21(1), 65–105
(2014)

25. Rueda, U., Vos, T.E.J., Almenar, F., Mart́ınez, M.O., Esparcia-Alcázar, A.I.: TES-
TAR: from academic prototype towards an industry-ready tool for automated test-
ing at the user interface level. In: Canos, J.H., Gonzalez Harbour, M. (eds.) Actas
de las XX Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD 2015).
pp. 236–245 (2015)

26. Singhera, Z.U., Horowitz, E., Shah, A.A.: A graphical user interface (gui) testing
methodology. IJITWE 3(2), 1–18 (2008)

27. Sun, Y., Jones, E.L.: Specification-driven automated testing of GUI-based Java
programs. In: Proceedings of the 42nd annual Southeast regional conference. pp.
140–145. ACM (2004)

28. Yang, W., Prasad, M.R., Xie, T.: A grey-box approach for automated gui-model
generation of mobile applications. In: Proceedings of the 16th International Confer-
ence on Fundamental Approaches to Software Engineering. pp. 250–265. FASE’13,
Springer-Verlag, Berlin, Heidelberg (2013)

29. Yeh, T., Chang, T.H., Miller, R.C.: Sikuli: Using gui screenshots for search and
automation. In: Proceedings of the 22Nd Annual ACM Symposium on User Inter-
face Software and Technology. pp. 183–192. UIST ’09, ACM, New York, NY, USA
(2009), http://doi.acm.org/10.1145/1622176.1622213


