A Reinforcement Learning Approach to
Automated GUI Robustness Testing

Sebastian Bauersfeld and Tanja E. J. Vos

Universitat Politecnica de Valéncia,
Camino de Vera s/n, 46022, Valencia, Spain
{sbauersfeld, tvos}@pros.upv.es
http://www.upv.es

Abstract. Graphical User Interfaces (GUIs) can be found in almost all
modern desktop, tablet and smartphone applications. Since they are the
glue between an application’s components, they lend themselves to sys-
tem level testing. Unfortunately, although many tools promise automa-
tion, GUI testing is still an inherently difficult task and involves great
manual labor. However, tests that aim at critical faults, like crashes and
excessive response times, are completely automatable and can be very
effective. These robustness tests often apply random algorithms to se-
lect the actions to be executed on the GUI. This paper proposes a new
approach to fully automated robustness testing of complex GUI appli-
cations with the goal to enhance the fault finding capabilities. The ap-
proach uses a well-known machine learning algorithm called Q-Learning
in order to combine the advantages of random and coverage-based test-
ing. We will explain how it operates, how we plan to implement it and
provide arguments for its usefulness.

Keywords: gui testing, automated testing, reinforcement learning

1 Introduction

Graphical User Interfaces (GUIs) represent the main connection point between a
software’s components and its end users and can be found in almost all modern
applications. This makes them attractive for testers, since testing at the GUI
level means testing from the user’s perspective and is thus the ultimate way of
verifying a program’s correct behavior. However, current GUIs are large, complex
and difficult to access programmatically, which poses great challenges for their
testability. In an earlier work [1] we presented a framework called GUITest to
cope with these challenges. GUITest allows to generate arbitrary input sequences
even for large Systems Under Test (SUT). The basic procedure comprises three
steps: 1) Obtain the GUT’s state (i.e. the visible widgets and their properties like
position, size, focus ...). 2) Derive a set of sensible actions (clicks, text input,
mouse gestures, ...). 3) Select and execute an action. Figure 1 gives an example
of how GUITest iteratively applies these three steps in order to drive Microsoft
Word. The ultimate goal is to generate sequences that crash the GUI or make
it unresponsive.

http://www.upv.es

2 Sebastian Bauersfeld and Tanja E. J. Vos

Q~ (search in Doc

O —
|Cambria Body) illz [-] (42

Draft
Web Layout
Outline

9 v Print Layout
Font | Notebook L. t
ICambria(Body)]v”[z].N Publishi "
Focus L:

A

B@|U[|x¢ Al=il BEIO=E=

[CEERETRED

Al eine 2o

a3l

Print Layout View [Sec 1] Pages: 1of

75% —®—|1

oW <>

@il . v Ribbon (o)

Toolbars Q >
Sidebar . >
Message Bar

Media Brow.

[Toolbox

= O styleO

3 B CitatiQs

= & scrapQok

: il ReferQxe Tools

% CompQybility Report

v Ruler .
Header and Qbter
Footnotes

E Master Docu.m

3 v Markup

Reveal Form‘ng
Zoom...

" TablesCQ)

(=)
N YA SV

000

3L3R%E

[Al Images

Print Layout View | Sec 1] Pages: lof

338 items
—

N

1
[sec 1] Pages: 1of 75% —®—|3

Print Layout View

Microsoft Error Reporting

Microsoft Word has encountered a problem and
needs to close. We are sorry for the
inconvenience.

W

If you were in the middle of something, the information you were working
oon might be lost. Microsoft Word will attempt to recover your work.

@ Recover my work and restart Microsoft Word

Please tell Microsoft about this problem.

Microsoft Word created an error report that you can send to help us improve
Microsoft Word. We will treat this report as confidential and anonymous.

Don't send

[¢]

Fig. 1. Sequence generation by iteratively selecting from the set of currently available
actions. The ultimate goal is to crash the SUT. (Not all possible actions are displayed
in order to preserve clarity)

A Reinforcement Learning Approach to Automated GUI Robustness Testing 3

In its current form, GUITest selects the actions to be executed at random. We
believe that this is a straightforward and effective technique of provoking crashes
and reported on its success in [1]. We were able to find 14 crash sequences for
Microsoft Word while running GUITest during 48 hours'. Some of the advantages
and disadvantages of random action selection are:

4+ No model or instrumentation required: This is an important aspect, since
usually there exists no abstract model of the GUIL. Generating one often
involves manual effort and, due to size constraints, it is either not complete
or not entirely accurate [2].

+ Easy to maintain: Tests continue to run in the presence of GUI changes.

+/— Unbiased: Each permutation of actions is equally likely to be generated. In
the absence of domain knowledge about the SUT this is desirable. However,
quite often certain aspects require more thorough testing than others.

— Not every action is equally likely to be executed.

— It can take a considerable amount of time until a sufficiently large percentage
of the GUI has been operated.

In this paper we strive to improve on the last three characteristics. In large
SUTs with many — potentially deeply nested — dialogs and actions, it is unlikely
that a random algorithm will sufficiently exercise most parts of the GUI within a
reasonable amount of time. Certain actions are easier to access and will therefore
be executed more often, while others might not be executed at all.

The idea is to slightly change the probability distribution over the sequence
space. This means that action selection will still be random, but seldom executed
actions will be selected with a higher likelihood, in order to favor exploration
of the GUI. The straightforward greedy approach of selecting at each state the
action which has been executed the least number of times, might not yield the
expected results: In a GUI it is often necessary to first execute certain actions
in order to reach others. Hence, these need to be executed more often, which
requires an algorithm that can “look ahead”. This brought us to consider a
reinforcement learning technique called Q-Learning. In the following section we
will explain how it works, define the environment that it operates in and specify
the reward that it is supposed to maximize.

2 The Algorithm

We assume that our SUT can be modeled as a finite Markov Decision Process
(MDP). A finite MDP is a discrete time stochastic control process in an envi-
ronment with a finite set of states S and a finite set of actions A [3]. During
each time step t the environment remains in a state s = s; and a decision maker,
called agent, executes an action a = a; € A; C A from the set of available
actions, which causes a transition to state s’ = s;41. In our case, A will refer

! Videos of these crashes are available at https://staq.dsic.upv.es/sbauersfeld/
index.html

https://staq.dsic.upv.es/sbauersfeld/index.html
https://staq.dsic.upv.es/sbauersfeld/index.html

4 Sebastian Bauersfeld and Tanja E. J. Vos

to the set of possible GUI actions, i.e. clicks on widgets, text input and mouse
gestures and S will be the set of observable GUI states.
The state transition probabilities are governed by

P(a,s,s") = Pr{sg1 = §'|sy = s,a; = a}

meaning, that the likelihood of arriving in state s’ exclusively depends on a and
s and not on any previous actions or states. This property, which is crucial to
the application of reinforcement learning algorithms, is called Markov Property.
We assume that it approximately holds for the SUT?.

In an MDP, the agent receives rewards R(a, s, s’) after each transition, so
that it can learn to distinguish good from bad decisions. Since we want to favor
exploration, we set the rewards as follows:

R(a,s,s') := { VZM

Tq

yif x, =0
,else

Where z, is the amount of times that action a has been executed and 7, is
a large positive number. Hence, the more often an action has been executed,
the less desirable it will be for the agent. The ultimate goal is to learn a pol-
icy m which maximizes the agent’s expected reward. The policy determines for
each state s € S which action a € A; should be executed. We will apply the
Q-Learning algorithm in order to find «. Instead of computing it directly, Q-
Learning first calculates a value function V (s, a) which assigns a numeric quality
value — the expected future reward — to each state action pair (s,a) € S x A.
This function is essential, since it allows the agent to look ahead when making
decisions. Eventually, it becomes trivial to derive the optimal policy: One selects
a* = argmaz,{V(s,a)la € A} for each s € S.

Algorithm 1 shows the pseudocode for our approach. The agent starts off
completely uninformed, i.e. without any knowledge about the GUIL. Step by step
it discovers states and actions and learns the value function through the rewards
it obtains. The quality value for each new state action pair is initialized to 7.
The heart of the algorithm is the value update in line 9: The updated quality
value of the executed state action pair is the sum of the received reward plus the
maximum value of all subsequent state action pairs multiplied by the discount
factor . The more v approaches zero, the more opportunistic and greedy the
agent becomes (it considers only immediate rewards). When ~ approaches 1 it
will opt for long term reward. It is worth mentioning that the value function and
consequently the policy will constantly vary, due to the fact that the rewards
change. This is what we want, since the agent should always put emphasis on
the regions of the SUT which it has visited the least amount of times.

Instead of always selecting the best action (line 6), one might also consider
a random selection proportional to the values of the available state action pairs.
This would introduce more randomness in the sequence generation process.

2 Since we can only observe the GUT states and not the SUT’s true internal states
(Hidden Markov Model), one might argue whether the Markov Property holds suf-
ficiently. However, we assume that this has no significant impact on the learning
process.

A Reinforcement Learning Approach to Automated GUI Robustness Testing 5

Input: 7init /* reward for unexecuted actions */
Input: 0<v<1 /* discount factor */
1 begin
2 start SUT
3 V(s,a) < Tinie V(s,a) € S x A
4 repeat
5 obtain current state s and available actions A
6 a” < argmaz.{V(s,a)la € As} /* select the best action */
7 execute a”
8 obtain state s’ and available actions A,
9 V(s,a") < R(a”,s,s") + v -mazaca_, V(s a) /* value update */
10 until stopping criteria met
11 stop SUT
12 end

Algorithm 1: Sequence generation with Q-Learning

Representation of States and Actions In order to be able to apply the
above algorithm, we have to assign a unique and stable identifier to each state
and action, so that we are able to recognize them, even across different runs of
the SUT. Our testing library GUITest allows us to derive the complete GUI state
of the SUT, so that we can inspect the property values of each visible widget.
For example: It gives access to the title of a button, its position and size and tells
us whether it is enabled. This gives us the means to create a unique identifier for
a click on that button: It can be represented as a combination of the button’s
property values, like its title, help text or its position in the widget hierarchy
(which parents / children does the button have). The properties selected for
the identifier should be relatively “stable”: The title of a window, for example,
is quite often not a stable value (opening new documents in Word will change
the title of the main window) whereas its tool tip or help text is less likely to
change. The same approach can be applied to represent GUI states: One simply
combines the values of all stable properties of all widgets on the screen. Since
this might be a lot of information, we will only save a hash value generated from
these values®. This way we can assign a unique and stable number to each state
and action.

3 Related Work

Artzi et al. [4] perform feedback-directed random test case generation for JavaScript
web applications. Their objectives are to find test suites with high code cover-
age as well as sequences that exhibit programming errors, like invalid-html or
runtime exceptions. They developed a framework called Artemis, which triggers
events by calling the appropriate handler methods and supplying them with the

3 Of course this could lead to collisions. However, for the sake of simplicity we assume
that this is unlikely and does not significantly affect the optimization process.

6 Sebastian Bauersfeld and Tanja E. J. Vos

necessary arguments. To direct their search, they use prioritization functions:
They select event handlers at random, but prefer the ones for which they have
achieved only low branch coverage during previous sequences.

Marchetto and Tonella [5] generate test suites for AJAX applications using
metaheuristic algorithms. They execute the applications to obtain a finite state
machine, whose states are instances of the application’s DOM-tree (Document
Object Model) and whose transitions are events (messages from the server / user
input). From this FSM they calculate the set of semantically interacting events.
The goal is to generate test suites with maximally diverse event interaction
sequences, where each pair of consecutive events is semantically interacting.

The strength of our approach is, that it works with large, native applications
which it can drive using complex actions. The abovementioned approaches either
invoke event handlers (which is not applicable to many GUI technologies) or
perform only simple actions (clicks). Moreover, our technique does not modify
nor require the SUT’s source code, which makes it applicable to a wide range of
programs.

4 Future Work

In this paper we proposed a technique for improving the effectivity of GUI ro-
bustness testing. We believe in the ability of random testing to provoke crashes
in GUI-based applications. However, due to the fact that modern GUIs often
have deeply nested dialogs and actions, which are unlikely to be executed by
a random algorithm, we think that a more explorative approach could improve
the fault finding effectivity. We are therefore integrating an algorithm known
as Q-Learning into our test framework GUITest. We think that this algorithm,
which was designed to solve problems in the presence of uncertainty and lack of
environmental knowledge, is suitable for testing large and complex GUIs with-
out additional information provided by formal models. We expect to finish the
implementation soon and look forward to report on the results.

Acknowledgments. This work is supported by EU grant ICT-257574 (FITTEST).

References

1. Bauersfeld, S., Vos, T.E.J.: GUITest: A Java Library for Fully Automated GUI
Robustness Testing. To appear in ASE 2012.

2. Huang, S., Cohen, M.B., Memon, A.M.: Repairing GUI Test Suites using a Genetic
Algorithm. ICST 2010: pp. 245-254

3. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

4. Artzi, S., Dolby, J., Jensen, S.H., Mgller, A., Tip, F.: A Framework for Automated
Testing of Javascript Web Applications. ICSE 2011: pp. 571-580

5. Marchetto, A., Tonella, P.: Using Search-Based Algorithms for Ajax Event Sequence
Generation during Testing. Empirical Software Engineering Volume 16 Issue 1, pp.
103-140. (Kluwer Academic Publishers Hingham, MA, USA). 2011

	Lecture Notes in Computer Science
	Introduction
	The Algorithm
	Related Work
	Future Work

