
Evaluating Rogue User Testing in Industry: an
Experience Report

Sebastian Bauersfeld
Centro del PROS

Universitat Politècnica de València
Valencia, Spain

Email: sbauersfeld@pros.upv.es

Antonio de Rojas
Clave Informática S.L.

Alicante, Spain
Email: aderojas@clavei.es

Tanja E.J. Vos
Centro del PROS

Universitat Politècnica de València
Valencia, Spain

Email: tvos@pros.upv.es

Abstract—Testing applications with a graphical user interface
(GUI) is an important, though challenging and time consuming
task. The state of the art in the industry are still capture and
replay tools, which may simplify the recording and execution of
input sequences, but do not support the tester in finding fault-
sensitive test cases and leads to a huge overhead on maintenance
of the test cases when the GUI changes. In earlier works we
presented the Rogue User Testing Tool, an automated approach
to testing applications at the GUI level whose objective is to solve
part of the maintenance problem by automatically generating test
cases based on a structure that is automatically derived from
the GUI. In this paper we report on our experiences obtained
when implanting the Rogue User testing Tool with the Spanish
software vendor Clavei who decided to apply the tool to stress test
a component of one of their ERP applications. Our main goal
was to identify potential problems that arise during the setup
of the Rogue User. While carrying out our tests, we discovered
critical and previously unknown faults in the application under
test.

I. INTRODUCTION

Testing software applications at the Graphical User Inter-
face (GUI) level is a very important testing phase to ensure
realistic tests because the GUI represents a central juncture in
the application under test from where all the functionality is
accessed. Contrary to unit or interface tests, where components
are operated in isolation, GUI testing means operating the
application as a whole, i.e. the system’s components are
tested in conjunction. This way, it is not only possible to
discover flaws within single modules but also faults arising
from erroneous or inefficient inter-component communication.
However, it is difficult to test applications thoroughly through
their GUI, especially because GUIs are designed to be operated
by humans, not machines. Moreover, they are inherently non-
static interfaces, subject to constant change caused by function-
ality updates, usability enhancements, changing requirements
or altered contexts. This makes it very hard to develop and
maintain test cases without resorting to time-consuming and
expensive manual testing.

The current industrial state of the art in GUI level testing is
Capture and Replay (CR) [1], [2]. The idea behind CR is that
of a tester developing use cases and recording (capturing) the
corresponding input sequences, i.e. sequences of actions like
clicks, keystrokes, drag and drop operations. These sequences
are then replayed on the UI to serve as regression tests for
new product releases. A major problem with this approach is
that the created sequences often break when the UI changes

(e.g., controls are removed or repositioned). This has severe
ramifications for the practice of testing: instead of creating new
test cases to find new faults, testers struggle with repairing
old ones, in order to maintain the test suite! For software
applications, the UIs change all the time and hence make
the CR method infeasible. Furthermore, new generation of
applications are increasingly able to adapt their own layout
to a target screen (e.g. small or large) and its user profile
(e.g. normal or elderly). Consequently, CR tools are sometimes
referred to as “Shelfware” and CR tool vendors are accused
of trying to sell them as the silver bullet [3]. Due to this
maintenance problem, companies return to manual regression
testing which results in less testing being done and faults that
still appear to the users.

In previous work we have presented an approach to testing
at the GUI level [4], [5] whose objective is to solve part of the
maintenance problem by automatically generating test cases
based on a structure that is automatically derived from the
GUI. The tool is called Rogue User and it uses the operating
system’s Accessibility API to recognize GUI controls and their
properties and enables programmatic interaction with them. It
derives sets of possible actions for each state that the GUI is
in and automatically selects and executes appropriate ones in
order to drive the GUI and eventually crash it. The tool uses
a machine learning algorithm called Q-Learning to generate
short, fault- effective and reproducible crash sequences, which
a normal human user would not come up with.

This paper reports on the experience gained when implant-
ing the Rogue User testing tool at a company called Clavei, a
Spanish software vendor that develops the accounting software
ClaveiCon that is part of their Enterprise Resource Planning
(ERP) system (see Figure 1) and sold to companies within
Spain. The product is in a mature state and has been tested and
applied for many years. However, Clavei recognizes to have
the regression testing maintenance problems when the GUI
changes and hence their clients every-time find more faults
which evidently is a very undesirable situation. The goal of
the study was twofold. On the one hand Clavei was interested
to see how the tool could be used within their context and
on their software application. On the other hand, we were
interested to see how easy of difficult is was to implant our
academic prototype within an industrial setting.



II. THE CONTEXT

Clavei is a private software vendor from Alicante, which
has specialized for over 26 years in the development Enterprise
Resource Planning (ERP) systems. for Small and Medium
Sized (SME) companies. One of their main products is called
ClaveiCon a software solution for SMEs for accounting and
financing control.

Due to their many clients, it is of fundamental importance
to Clavei to thoroughly test their application before releasing
a new version. Currently, this is done manually. Due to the
complexity and size of the application this is a time-consuming
and daunting task, which is not always done well as is observed
by the amount of faults that are communicated by the clients
of the company.

Clavei is eager to investigate alternative, more automated
approaches to reduce the testing burden for their employees
and has been seeking information about Capture & Replay
tools. After having attended a presentation at the Technical
University of Valencia, the company expressed explicit interest
in the Rogue User Tool and requested to carry out a trial period
to investigate the applicability of the tool for testing their ERP
products. The findings of which are presented in this paper.

Clavei’s testing and development team creates test cases
by relying on specified use cases. Each test case describes a
sequence of the user interactions with the graphical interface
and all of them are executed manually by the test engineers. If
a failure occurs, the engineer reports it to a bug tracking system
and assigns it to the developer in charge of the part affected
by the failure. If necessary, this developer then discusses the
issues with his team, fixes the fault and re-executes the test
cases to ensure that the application now performs as expected.

The SUT in our investigation is ClaveiCon (Figure 1), an
accounting software that belongs to a classic database-backed
Enterprise Resource Planning system developed at Clavei.

The application is used to store data about product plan-
ning, cost, development and manufacturing. It provides a real-
time view on a company’s processes and enables controlling
inventory management, shipping and payment as well as
marketing and sales.

ClaveiCon is written in Visual Basic, makes use of the
Microsoft SQL Server 2008 database and targets the Windows
operating systems. The application can be considered to be in
a mature state, as it has been applied in companies all over
Spain during more than a decade.

The fact that Clavei tests their application manually before
each release, entails considerable human effort and conse-
quently high costs, which makes it desirable to investigate
automated alternatives.

III. THE ROGUE USER TESTING TOOL

Modern GUIs are large, complex and difficult to ac-
cess programmatically which poses great challenges for their
testability. The Rogue User (RU) is a technique that allows
completely unattended testing of large and complex gui-based
SUTs. Its basic sequence generation algorithm comprises the
following steps:

1) Obtain the GUI’s state (i.e. the visible widgets and
their properties like position, size, focus ...).

2) Apply an oracle to check whether the state is valid.
If it is invalid, stop sequence generation and save the
suspicious sequence to a dedicated directory, for later
replay.

3) Derive a set of sensible actions (clicks, text input,
mouse gestures, ...).

4) Select and execute an action.
5) If the given amount of actions and sequences has been

generated, stop sequence generation, else go to step
1.

In its default mode, the RU selects the actions to be
executed at random. We believe that this is a straightforward
and effective technique of provoking crashes and reported on
its success in [5]. We were able to find 14 crash sequences
for Microsoft Word while running the Rogue User during 48
hours1.

In large SUTs with many – potentially deeply nested –
dialogues and actions, it is unlikely that a random algorithm
will sufficiently exercise most parts of the GUI within a
reasonable amount of time. Certain actions are easier to access
and will therefore be executed more often, while others might
not be executed at all.

Therefore, in [4] and [5] we presented an algorithm whose
idea it is to slightly change the probability distribution over
the sequence space. This means that action selection will still
be random, but seldom executed actions will be selected with
a higher likelihood, with the intend to favour exploration of
the GUI.

The strength of the approach is, that it works with large,
native applications which it can drive using complex actions.
Moreover, the technique does not modify nor require the SUT’s
source code, which makes it applicable to a wide range of
programs. With a proper setup and a powerful oracle, the
Rogue User can operate completely unattended, which saves
human effort and consequently testing costs.

IV. THE STUDY

A. Objective - What to achieve?

The goal of the study is to find out how many previously
unknown faults and problems the Rogue User Tool can reveal
in a mature, thoroughly tested system. We will not use a
System Under Test (SUT) with known or injected faults, but
the current version of ClaveiCon, as it is shipped to clients
of Clavei. This is a more realistic setting than injecting faults,
since in production errors are unknown and there is usually no
clear definition of what precisely is an error. Consequently, in
this study, we will install the Rogue User in the context of the
ClaveiCon runtime environment, design an oracle, configure
the action set, run the tool and report about the problems
encountered and lessons learned.

The investigation has been carried out in a fashion similar
to the one applied in Iterative Software Development [6]. Since
the goal is to develop a working set-up for the Rogue User,

1Videos of these crashes are available at http://www.youtube.com/watch?v=
PBs9jF pLCs



Fig. 1: The SUT: ClaveiCon

Analyze The RU tool
For the purpose of Investigating
With respect to Effectiveness and Efficiency
From the viewpoint Of the Testing Practitioner
In the context of The Development of the ClaveiCon accounting system

we reasoned it is necessary to start with a simple base set-
up and perform a stepwise refinement of each implementation
aspect. Thus we will iteratively perform the phases of planning,
implementation, testing and evaluation of the setup. In this
iterative process we will:

• Try out different setups for the Rogue User Tool.
The goal is to find a setup which allows as much
automation as possible while detecting commonly
encountered problems and enabling notification and
reproduction thereof. In order to strike the balance
between a powerful oracle and a truly automatic ap-
proach, one has to find a trade-off between an accurate
oracle with good fault-detecting capabilities and one
which generates few false positives.

• Apply the developed set-up and determine its effi-
ciency and effectiveness. We will record the difficul-
ties that arise during application and find out how
much manual labour is actually still necessary during
the test.

After having developed the set-up and applied the tool to
the SUT, we will have gained valuable insight into specific
challenges and problems encountered during a real-world test.
This insight will be the basis for future research.

B. Subjects - Who applies the techniques?

Since our investigation involves the application of action
research, the researchers of the Polytechnic University of
Valencia as well as Clavei’s developers will collaborate in
a joint effort to setup the Rogue User Tool and to test
Clavei’s accounting system. The subjects are a researcher with
practical testing experience and two Clavei test practitioners
who worked in the industry for many years.

All three testers will work both, on-site at Clavei as
well as communicate over Skype to collaborate and exchange
information. The researcher has extensive domain-knowledge
about the Rogue User Tool and will thus lead the development
of the setup. The two industrial Clavei testers, on the other
hand, are familiar with the internals of ClaveiCon, so that all
three will complement each other.

C. What will be measured?

During the investigation we will measure certain aspects
of the prototype setup development in order to evaluate the
Rogue User Solution. The following aspects were measured
in order to obtain indicator values:

1) Effectiveness:
a) Number of failures observed after executing

the Rogue User Test on ClaveiCon.
b) Percentage of reproducible failures.
c) Number of false positives.

2) Efficiency:
a) Time needed to set-up the test environment

and get everything running



b) Lines Of Code (LOC) and time needed for
defining error definition, oracle design, action
definition and design of stopping criteria.

c) Time for running the RU tool
d) Time needed for manual labour after the

Rogue User Test has been started. Here we
want to find out how much manual work
is actually necessary during a full test. This
includes adjustments that needed to be made,
the evaluation of run results and reproduction
of potential faults as well as other manual
activities.

D. Protocol for the Set-up Development

Our study has been carried out in a fashion that allowed
us to perform iterative development of the Rogue User Setup.
This means that we performed a set of ordered steps in a loop.
We think that the natural way of setting up our tool involves
a mode of operation similar to the one applied in Iterative
Software Development [6], which usually repeats the phases
of planning, implementation, testing and evaluation in order to
achieve increasingly better results. The process included the
following steps which were repeated several times to yield the
final Rogue User Setup:

1) Planning Phase:
a) Implementation of Test Environment: Plan

and implement the technical details of the test
environment for the Rogue User.

b) Error Definition: Anticipate and identify po-
tential fault patterns.

2) Implementation Phase:
a) Oracle Implementation: Implement the detec-

tion of the errors defined in the previous step.
b) Action Definition Implementation: Imple-

ment the action set, which defines the be-
haviour of the Rogue User.

c) Implementation of stopping criteria: These
criteria determine when sufficient testing has
been done by the Rogue User.

3) Testing Phase:
a) Run the test.

4) Evaluation Phase:
a) Identify the most severe problems encoun-

tered during the run and reproduce poten-
tially erroneous sequences. The collected in-
formation will be used for the refinement of
the setup during the next iteration.

V. RESULTS

The development took place over a period of 2 weeks
in which the participants performed the activities outlined
in Section IV-D. As mentioned earlier, our strategy was to
carry out an iterative process, in which we repeated the
phases planning, implementation, testing and evaluation until
we obtained a viable Rogue User setup. Generally, the first
step in setting up a RU Test is to enable the RU to start and
stop the SUT. In the case of ClaveiCon this simply amounts
to specifying the executable. The tool can then execute the

program before generating a sequence and kill its process after
sequence generation has finished. Here it is important to make
sure that the SUT always starts in the same initial state, in order
to enable seamless replay of recorded sequences. Therefore,
it is necessary to delete potential configuration files which
have been generated during previous runs and could potentially
restore previous state.

Our next step was to anticipate and define certain error
patterns that could occur during the test. For our initial setup
we only considered crashes and non-responsiveness, but during
later iterations we wrote more fine-grained error definitions
which exploited information obtained during previous runs.
After we defined our faults, we settled out to implement the
Rogue User’s oracle. The complexity of the implementation
depended on the type of the errors to be detected and increased
over time.

Before we were able to run our RU setup, we had to
define the actions that the RU would execute. The action
definitions determine what controls the RU clicks on, where
it types text in and where it performs more complex input,
such as drag and drop operations. Those definitions, along
with the previously mentioned oracle, can be encoded in the
tool’s customizable protocol and visualized during runtime for
debugging purposes. Figure 2 shows the actions detected by the
Rogue User, based on the initial version of action definitions.

This initial version implemented only clicks on most ele-
ments. In later versions we included text input and drag and
drop operations.

The final ingredient for a finished setup is the stopping
criterion which determines when the Rogue User will cease to
generate sequences and will finish the test. Our initial setup
used a time-based approach which stopped the test after a
particular amount of minutes had passed by. Later on we used
a combination of several criteria, such as time and amount of
generated sequences.

After our first run we already detected a severe fault, in
which the SUT refused to respond to any user input. Figure 3
shows this first error, which was the first of two of this kind.

Whenever the Rogue User detected such a fault it logged
the information, saved the corresponding sequence and contin-
ued with the generation of the next sequence. After the test had
been finished, the tester read the logs where she was presented
the final results. In case of an error the RU yielded an output
such as the one in Figure 4 which corresponds with the error
mentioned above. The log told the tester which actions had
been executed, where the fault occurred and what the cause
was (in this case an unresponsive system).

During a few runs we encountered difficulties with our
current setup, such as non-reproducible sequences, unexpected
foreground processes or “stalemate” situations in which the RU
did not have sufficiently detailed action definitions to proceed
the sequence generation. These problematic situations usually
manifested themselves within the log files (too few actions,
actions sometimes failed since the SUT was blocked by an-
other process, etc.). After each test execution we inspected the
logs, the encountered errors and the problems if some occurred.
We then continued with the next iteration of development, in
order to adjust and improve our test environment, the error



Fig. 2: Action definitions.

Fig. 3: Easy to detect fault. The SUT froze and did not respond to user input.



25.mayo.2013 08:04:27
Hello, I'm the Rogue User!

25.mayo.2013 08:04:28 Starting system...
Starting sequence 0
'Generate' mode active.
Executed (0): Left Click at 'Utilidades'...
Executed (1): Left Click at 'Previsiones'...
Executed (2): Left Click at 'P.G.C.'...
Executed (3): Type 'Test ...' into '...
Executed (4): Left Click at ''...
Executed (5): Left Click at ''...
Executed (6): Left Click at ''...
Executed (7): Left Click at 'Periodo Desde'...
Executed (8): Left Click at ''...
Executed (9): Left Click at ''...
Executed (10): Left Click at 'Minimize'...
Detected fault: severity: 0.8 info: System is unresponsive! I assume something is wrong!
Sequence 0 finished.
Sequence contained problems!
Copying generated sequence ("./output\sequence0") to output directory...
Shutting down system...

Fig. 4: The Rogue User’s log file for the error in Figure 3.

definitions, the oracle, the action definitions and the stopping
criteria. In the following paragraphs we will describe these
steps in more detail.

1) Test Environment: The test environment is the skeleton
of the Rogue User and guarantees a seamless execution of
the generated input sequences without interruption by other
sources (e.g. the SUT is always the foreground process, it
can be started automatically, it can be stopped reliably in
case of a severe error, recorded sequences can be reproduced
reliably, ...). The main challenges that we encountered during
the development of the test environment were the following:

• Restoring a dedicated start state: This is important in
order to make sure that previously recorded sequences
can be replayed reliably. If the SUT performs book-
keeping on things like window positions or saves and
restores settings of previous runs, then the starting
states of the system will vary significantly, rendering
sequence replication difficult or impossible. In the
case of ClaveiCon we discovered several configuration
files for various settings. However, it can be non-
trivial to find all these files and it took 3 iterations
to identify most of them. Moreover, ClaveiCon uses
a database to store customer data. This database
changed during sequence generation (tables or rows
got added, modified or deleted) and it was necessary
to restore its original state everytime a new sequence
got generated. We implemented our test environment
such that the database would be repopulated according
to a particular schema. However, this incurred a delay
of more than 10 seconds before each sequence, which
increased the testing time.
Other factors were related to the system’s clock time,
the processor load, memory consumption and thread
scheduling, which varied for each sequence and which
could not be controlled. In one case we were not

able to reliably replay an erroneous crash sequence.
Sometimes the sequence failed, and at other times it
went through without problems. This “indeterminism”
sometimes impeded the testing process.

• Unexpected third-party processes. ClaveiCon is a stan-
dalone application and usually includes everything that
is needed to work with it. However, it has functionality
that invokes external applications, such as word pro-
cessors to view exported files or a help system. Since
these are not part of the process under test, the Rogue
User will ignore them. Unfortunately, these processes
can occur in the foreground and thus block access to
the SUT, preventing the RU from properly generating
sequences. During the development we encountered
several such situations and implemented functionality
to terminate the applications when encountered.

In summary, the development of a stable test environment is
not complicated but requires a certain amount of trial-and-error
and some knowledge about the SUT. A proper replay of each
recorded sequence cannot be guaranteed, but the more robust
the environment is, the better the likelihood of a replay. Later
in the text we will see that almost all erroneous sequences, but
one, were reproducible.

2) Error Definition: Before we started to implement the
actual oracle, we brainstormed on potential errors that could
occur within the SUT. The following list describes the ones
that we came up with during the development:

1) Crashes: If the process associated with the SUT
suddenly stopped, we considered it to be a crash. A
problem that can occur with this definition is, that
certain actions that the Rogue User executes will
inevitably shut down the SUT, e.g. the “Exit” menu
item. Obviously, those are no crashes. Our approach
was to consider these cases in the action definition of



Fig. 5: Dialog triggered by an exception with easy to detect
error message.

the Rogue User. We simply disallowed actions that
would terminate the SUT.

2) Freeze (unresponsiveness): If the SUT did not re-
spond for a specific amount of time, we considered
it to be dead-locked.

3) Exception: ClaveiCon was programmed in such a
way that, whenever an exception is thrown that
“bubbles up” to the system’s main function, it will
generate an error dialog with the error string, an error
number and the name of the function that caused the
exception. Figure 5 shows such a dialog. As described
in [4] and [5] the Rogue User creates a so-called
widget tree for each state that the SUT is in. This tree
contains information about the SUT’s current screen
layout, the coordinates of each control element and
its properties, such as its name or text content. This
makes it possible to detect when a dialog such as in
Figure 5 appears and to report an erroneous sequence.
We simply applied regular expressions that searched
for particular error strings within the widget tree.
However, we encountered several situations where
this triggered a false positive, since other control
elements had names that corresponded with the error
strings, e.g. a button called “Report Error”. Therefore,
we had to implement certain rules and first analyze
the type of control element that included the error
string.

4) Layout Error: Another error type which we detected
during later iterations were layout errors. Figure 8
shows a clipping error within ClaveiCon where two
dialogs fight over the drawing order and leave an
abnormal representation on the screen. These types
of errors can be detected by checking the value for
the z-orders of the dialog elements. If two dialogs
exhibited the same z-order value, this often resulted
in this visible defect.

It is generally difficult to anticipate and properly define
many errors since one does not know what to look for. Crashes
and freezes are easy to detect, but the exception and layout
errors we noticed during test runs and later implemented
their detection. A thorough knowledge of the SUT can help

and so the fact that two of the testers were also developers
of ClaveiCon certainly helped. However, due to the oracle
problem [7] it is hard to define many error patterns thoroughly
and ahead of time.

3) Oracle Implementation: In order to implement the error
detection as defined in the last paragraph, the Rogue User Tool
provides a customizable protocol with hooks for specific tasks,
such as error detection. The implementation has been done in
the Java Programming language. Our oracle operated solely
on the widget tree for each state, which was already provided
by the RU Tool. The tree provides information about the SUT
(such as whether it is running, etc.) and its current screen state
(position and properties of all visible control elements). This
allowed a straightforward implementation of the previously
stated detection rules. When the oracle reported an error, it
attached an error message and a priority value (see Figure
4). The error message then appeared in the error log and
the priority value was used to order the detected erroneous
sequences, so that we were able to inspect the most promising
ones first. This turned out to be useful, since we encountered
a few false positives during our tests, such as errors triggered
by too general regular expressions for error strings. We gave
crashes and freezes higher priority so that they were reported
first.

After the error definition step, the implementation of the
oracle was usually straightforward and free of any complica-
tions.

4) Implementation of Action Definitions: As with the ora-
cle, the Rogue User Tool provides a hook for action definitions.
The tool comes with a variety of predefined actions and allows
to combine those to form more complex ones such as mouse
gestures. The position and control type information within the
widget tree allowed us to tailor action definitions to specific
types of controls. During the first iteration we started off with
clicks on enabled button and menu item controls. The tool
provides a mode in which we were able to debug our defini-
tions, by visualizing them. Figure 2 shows the definitions for
our initial setup. In addition, the tool provides a so-called “spy
mode” (see Figure 7) which allows to inspect the properties of
specific control elements. This information has been valuable
when we tried to exclude actions to specific elements such
as clicks to the “Exit” menu item, which terminates the SUT
prematurely.

The following is a list of challenges that we encountered
when implementing the action definitions for the Rogue User:

1) Undetected control elements: Certain special or cus-
tom controls were not detected by the Rogue User.
Consequently, these controls did not appear in the
widget tree, which made it harder to write action
definitions for them, due to e.g. unavailable positional
information. This amounted to only a few control
elements, such as the items in the tool bar below the
main menu in Figure 2. However, we were able to
write code that estimated the position of these items
and thus able to generate actions for them.

2) Exclusion of unwanted actions: Certain actions
caused potentially hazardous effects to the host com-
puter. ClaveiCon has menu items that create files
to export data, or open file dialogs in which one



Fig. 6: Clipping error. Detectable through inconsistencies within the widget tree.

can move or delete files and directories. We first
had to prohibit certain actions manually in order to
guarantee the integrity of the hard disk. In later iter-
ations we opted for another option: We ran our tests
on a different system user account with restrictive
directory rights. This reduced the complexity of our
action definitions while guaranteeing the integrity of
the machine.

3) Insufficient action choices: We observed sequences
in which the Rogue User navigated into dialogs and
was unable to leave those, due to a lack of available
actions. We countered this by allowing the tool to
perform certain actions such as hitting the escape key
after specific time intervals.

5) Stopping Criteria: The stopping criterion determines
when a test will finish, i.e. when the Rogue User will cease
to generate new sequences. For our initial setup we applied
a time-based approach with a maximum test time of 12
hours. For the final setup we used a combination of time and
number of generated sequences. The reason for this is that
certain sequences take longer to execute, so that the amount
of generated sequences can vary largely. Since the tool uses a
search-based algorithm which tries to explore the GUI of the
SUT as thorough as possible, this can affect the test quality.
Thus, we made sure that the Rogue User would generate a

minimum of 200 sequences (with 200 actions each) per run,
a setup which we successfully applied during earlier case
studies.

6) Test Execution: During each iteration, after adapting the
Rogue User setup, we conducted an overnight test run. Most
of the time this happened completely unattended. However,
during the first 2 iterations we observed the test for a while
in order to spot potential problems. During later runs we only
inspected the tool’s log file which records each executed action
and other information, along with potential problems.

We also watched the sequence generation for a small
amount of time in order to spot errors not detected by the
current oracle or to get new ideas. This is how we found
definitions for the encountered layout errors.

7) Evaluation: During the mornings we read the log files
and inspected potentially erroneous sequences. Most of the
time we spent reproducing those. If this was not possible,
then the tool still provided the option to view an ordered set
of screenshots of the sequence’s actions, which enabled us to
understand what happened.

During the first few iterations we encountered problems
with unexpected foreground processes or non-reproducible se-
quences due to the fact that our test environment did not delete
hidden configuration files. We learned from each iteration and



Fig. 7: Spy mode.

Fig. 8: Error dialog triggered by an internal exception.

improved the test environment as well as the other parts of
the RU’s setup. We recorded the time we spent doing manual
work during and after each test. The last row of Table II shows
this relatively low value.

A. Final Results

Table I lists the values for the effectivity indicators, i.e.
the amounts of errors of different type that we encountered
during all of our test runs. According to the Clavei developers,
all of these were triggered by different code segments within
ClaveiCon’s source code. With one exception we were able to

Fig. 9: Error dialog triggered by an internal exception.

reproduce each of the failures. The one problematic sequence
can be replayed, but the fault will not be triggered. We
currently do not know the reason for this, but we suspect it
to be related to the thread-scheduling of the system and an
erroneous piece of multi-threaded code. In summary, the RU
Tool was able to detect 10 previously unknown faults, which
is an encouraging result. The high number of false positives
can be explained due to problems with the initial oracle in the
first two development iterations, where 7 of the false positives
where triggered due to a too general regular expression for the
exception dialogs.



Error Type Amount Reproducible?
freeze 2 1/1
crash 1 1/1

exception 6 5/6
layout 2 3/3

false positives 8

TABLE I: Indicator values for effectivity (list of encountered
errors).

Activities Indicator Value
LOC for the RU Setup 2a) 1002
Implementation of test environment 2b) 340
Error Definition 2b) 140
Oracle Implementation 2b) 490
Action Definition Implementation 2b) 560
Implementation of Stopping Criteria 2b) 40
Total Development Time 2b) 1570
Test Duration 2c) 5490
Manual intervention during and after Test Runs 2d) 100

TABLE II: Indicator values for efficiency (over all iterations)

Table II shows the results for the efficiency indicators.
Accumulated over all 5 iterations it took approximately 26.2
hours of development time to yield the final setup for the
Rogue User. The majority of the time was spent on the oracle
and action definition implementation. However, the final setup
could be replayed over longer periods of time and could
thus reveal more faults with only minimally more human
intervention. In a possible scenario one would run the setup
during weekday nights and check the RU Tools’ log file
during the following mornings. The low value of indicator 2d)
indicates that the tool needs only very little human attention
which in our case amounted to looking for potential problems
in the log file and reproducing the faulty sequences. The tool
cannot detect every error type (at least not with reasonable
development effort), but it can detect certain critical errors
with very low effort. The initial effort in developing the test
setup pays off as testing time increases, as it can be applied
arbitrary amounts of time.

VI. CONCLUSIONS AND LESSONS LEARNED

In this document we presented the results of an investiga-
tion that we carried out together with Clavei, a software vendor
located in Alicante, Spain. We settled out to perform a real-
world test with a previously unknown SUT. Our goal was to
obtain knowledge about the challenges encountered in setting
up such a test and to gather fundamental information for more
detailed future research.

We performed the development of the setup in an iterative
fashion, since we think this is the traditional way to gain
feedback about its quality during each iteration and enables
the testers to continuously improve the test environment,
incorporate new ideas and fix previous problems.

One of the challenges that we encountered was the problem
of reproducing (erroneous) sequences. It requires a thorough
test environment with ideally identical conditions during a
sequence’s recording and replay time. Unfortunately, most
complex SUTs are stateful and save this state within databases,

configuration files or environment variables, which complicates
the development of a test environment that guarantees traceable
and deterministic sequence generation and replay. An interest-
ing starting point would be to execute the SUT in a virtual
machine environment, which would allow to restore most of
the environmental conditions. One would have to deal with
larger memory requirements and a time-overhead for loading
the VM snapshots, but today’s large and fast hard disks might
make this problem tractable. However, for more distributed
SUTs whose components live on multiple machines, this might
not be a viable option and would call for additional solutions.

Another challenge was the development of a sufficiently
powerful oracle. We started off completely blind without
any ideas for potential errors. Our ideas developed during
later iterations and with greater knowledge about ClaveiCon.
However, we think that the types of errors we found and the
error definitions we used, might be applicable to other SUTs as
well. An idea could be a collection of “canned” error patterns
that a tester who uses the Rogue User could start off with and
refine.

To sum up, the development of an effective and efficient
setup for the Rogue User takes some initial effort (in our
case approximately 26 man hours) but will pay off the more
often the test is run. The manual labor associated with a test
breaks down to the inspection of log files, reproduction and
comprehension of errors and makes only a tiny fraction of the
overall testing time (we spent around 100 minutes of manual
intervention during and after tests, compared to over 91 hours
of actual unattended testing). This, combined with the fact that
the Rogue User detected 10 previously unknown critical faults,
makes for a surprisingly positive result and animates us to do
more thorough case studies to evaluate that the technique is a
valuable and resource-efficient supplement for a manual test
suite.

ACKNOWLEDGMENT

This work was financed by the FITTEST project, ICT-
2009.1.2 no 257574.

REFERENCES

[1] Z. U. Singhera, E. Horowitz, and A. A. Shah, “A graphical user interface
(gui) testing methodology,” IJITWE, vol. 3, no. 2, pp. 1–18, 2008.

[2] B. N. Nguyen, B. Robbins, I. Banerjee, and A. M. Memon, “Guitar:
an innovative tool for automated testing of gui-driven software,” Autom.
Softw. Eng., vol. 21, no. 1, pp. 65–105, 2014.

[3] C. Kaner, “Avoiding shelfware: A managers’ view of automated gui
testing.” www.kaner.com/pdfs/shelfwar.pdf, 2002.

[4] S. Bauersfeld and T. Vos, “A reinforcement learning approach to auto-
mated gui robustness testing,” in In Fast Abstracts of the 4th Symposium
on Search-Based Software Engineering (SSBSE 2012). IEEE, 2012, pp.
7–12.

[5] S. Bauersfeld and T. E. J. Vos, “Guitest: a java library for fully
automated gui robustness testing,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2012. New York, NY, USA: ACM, 2012, pp. 330–333. [Online].
Available: http://doi.acm.org/10.1145/2351676.2351739

[6] C. Larman and V. Basili, “Iterative and incremental developments. a brief
history,” Computer, vol. 36, no. 6, pp. 47–56, 2003.

[7] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2008.


