
Evaluating the TESTAR tool in an Industrial Case Study

Sebastian Bauersfeld
Universidad Politecnica de

Valencia, Spain
sbauersfeld@pros.upv.es

Tanja E.J. Vos
Universidad Politecnica de

Valencia, Spain
tvos@pros.upv.es

Nelly Condori-Fernandez
Vrije Universiteit van

Amsterdam, The Netherlands
n.condori-

fernandez@vu.nl
Alessandra Bagnato
Softeam, Paris, France

alessandra.bagnato@softeam.fr

Etienne Brosse
Softeam, Paris, France

etienne.brosse@softeam.fr

ABSTRACT
[Context] Automated test case design and execution at the
GUI level of applications is not a fact in industrial prac-
tice. Tests are still mainly designed and executed manu-
ally. In previous work we have described TESTAR, a tool
which allows to set-up fully automatic testing at the GUI
level of applications to find severe faults such as crashes or
non-responsiveness. [Method] This paper aims at the eval-
uation of TESTAR with an industrial case study. The case
study was conducted at SOFTEAM, a French software com-
pany, while testing their Modelio SaaS system, a cloud-based
system to manage virtual machines that run their popular
graphical UML editor Modelio. [Goal] The goal of the study
was to evaluate how the tool would perform within the con-
text of SOFTEAM and on their software application. On the
other hand, we were interested to see how easy or difficult it
is to learn and implant our academic prototype within an in-
dustrial setting. [Results] The effectiveness and efficiency of
the automated tests generated with TESTAR can definitely
compete with that of the manual test suite. [Conclusions]
The training materials as well as the user and installation
manual of TESTAR need to be improved using the feedback
received during the study. Finally, the need to program
Java-code to create sophisticated oracles for testing created
some initial problems and some resistance. However, it be-
came clear that this could be solved by explaining the need
for these oracles and compare them to the alternative of
more expensive and complex human oracles. The need to
raise consciousness that automated testing means program-
ming solved most of the initial problems.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Quality—software testing

Keywords
Software Testing at the User Interface level, TESTAR

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM’14, September 18-19, 2014, Torino, Italy. Copyright 2014 ACM
978-1-4503-2774-9/14/09...$ 15.00.

1. INTRODUCTION
Automated test case design and execution at the GUI level

of applications is not a fact in industrial practice. Tests are
still mainly designed and executed manually. In previous
work we have presented an approach to automated test-
ing at the GUI level [3] whose objective is to automatically
generate and execute test cases based on a structure that
is automatically derived from the GUI. Our tool is called
TESTAR (Test Automation at the useR interface level) and
it was evaluated in experimental conditions using different
software applications like MS Word (running it 48 hours we
detected 14 crash sequences 1). Subsequently, TESTAR was
also applied it to a mature industrial accounting software ap-
plication that has been developed at a Spanish company for
over 15 years and the results were similar in terms of fault
effectiveness detection, the results are published here [2].

With the purpose of getting a better understanding about
the applicability of the tool in an industrial environment,
in this paper we report a case study, where real industrial
subjects (and not the academics) apply the tool to their
daily testing tasks. Consequently, besides effectiveness and
efficiency of testing, this study also evaluated learnability
and satisfaction of the tool in practice.

This case study reported on in this paper has been exe-
cuted at the company SOFTEAM2, a French software com-
pany. SOFTEAM develops Modelio SaaS3, a cloud-based
system to manage virtual machines that run their popular
graphical UML editor Modelio.

The type of case study presented here can be powerful
[7] since, although they cannot achieve the scientific rigor of
formal experiments, their results can provide sufficient in-
formation to help other companies judge if the specific tech-
nology being evaluated will benefit their own organization
[10, 6] and will boost technology transfer.

This paper is structures as follows. Section 2 described the
context of SOFTEAM, the company where we executed the
study. Section 3 describes the design of our study. Section 4
lists the collected data and Section 5 presents the analysis of
the data related to the proposed research questions.Section
6 discusses the threats to validity, and Section 7, finally,
concludes.

1Videos of these crashes are available at http://www.
youtube.com/watch?v=PBs9jF_pLCs
2http://www.softeam.com/
3http://www.modeliosoft.com

2. THE CONTEXT: SOFTEAM
SOFTEAM is a private software vendor and engineering

company with about 700 employees located in Paris, France.
This case study has been executed within the development
and testing team responsible for Modelio Saas, a rather new
SOFTEAM product. Modelio SaaS is a web administra-
tion console written in PHP, which allows an administrator
to connect to his account for managing modelling projects
created with Modelio UML Modeling tool, another product
from SOFTEAM.

One of the priorities of SOFTEAM is to maximize users-
interaction coverage of their test suites with minimum costs.
However, the current testing process has several limitations
since test case design and execution is performed manually
and resources for manual inspection of test cases are limited.

Learning to use and integrate TESTAR into SOFTEAM’s
current testing processes, could allow testers to reduce the
time spent on manual testing. The downside of this potential
optimization is the extra effort and uncertainty that comes
with applying a new test approach. To decide if this extra
effort is worth spending, a case study has been planned and
carried out. The results will support the decision making
about whether to adopt the TESTAR tool at SOFTEAM.

3. DESIGN OF THE CASE STUDY

3.1 Objective
The goal of the case study is to measure the learnabil-

ity, the effectiveness, efficiency and subjective satisfaction
when using TESTAR in the context of Modelio SaaS. We
will concentrate on the following questions:

RQ1 How learnable is the TESTAR tool when it is used
by testing practitioners of SOFTEAM?

RQ2 How does TESTAR contribute to the effectiveness
and efficiency of testing when it is used in real industrial
environments and compared to the current testing practices
at SOFTEAM?

RQ3 How satisfied are SOFTEAM testers during the
installation, configuration and application of the tool when
applied in a real testing environment?

3.2 Objects of the study

3.2.1 The System Under Test (SUT)
The SUT selected for this study is the Modelio SaaS sys-

tem developed at SOFTEAM. Modelio SaaS is a PHP web
application, that allows for easy and transparent configura-
tion of distributed environments. It can run in virtual envi-
ronments on different cloud platforms, offers a large number
of configuration options and hence poses various challenges
to testing [1]. In this study we will focus on the web ad-
ministration console, which allows server administrators to
manage projects created with the Modelio modelling tool,
and to specify user rights for working on these projects. The
source code is composed of 50 PHP files with a total of 2141
lines of executable code.

3.2.2 TSSoft – SOFTEAM’s existing manual Test Suite
The existing test suite is a set of 51 manually crafted sys-

tem test cases that SOFTEAM uses to manually perform
regression testing of new releases. Each test case describes
a sequence of user interactions with the graphical user in-

Test Case SaaS-7: Create a customer account from a server administrator
account

Author: cba

#: Step actions: Expected Results:

1 Sign in as a server administrator

2 Go to "Compte clients" -> "Créer un compte
client"

The form to fill
customer's details is
displayed.

3

Fill:

1. the 'nom' field with a name
2. the "date de soucription" field with a

date with format 'YYYY-MM-DD"
3. the "date de validité" field with a date

with format 'YYYY-MM-DD"
4. the 'login' field with a login
5. the 'mot de passe' field with a

password
6. the 'e-mail' field with an email address

4 Click on 'Créer compte'

The 'Gestion des
comptes clients" page
must be displayed with a
table containing the
customer's details.

Execution
type: Manual

 Keywords: None

Figure 1: Manual test case, used by Modelio SaaS
testers for functional testing.

terface as well as the expected results. Figure 1 shows an
example of such a test case.

3.2.3 Injected Faults
In order to be able to study the effectiveness (i.e. fault

finding capability) of TESTAR, SOFTEAM proposed to se-
lect a list of faults that have occurred in previous version of
Modelio SaaS and which are considered important. These
faults have been re-injected into the last version of Mod-
elio SaaS that has been used during the study. Since all
of these faults occurred during the development of Modelio
SaaS, which makes them realistic candidates for a test with
the TESTAR tool.

Table 1 shows the list of faults, their descriptions, identi-
fiers and severity.

3.3 Cases or Treatments - What is studied?

3.3.1 Testing with TESTAR
TESTAR its basic test sequence generation algorithm com-

prises the following steps:

1. Obtain the GUI’s state (i.e. the visible widgets and
their properties like position, size, focus ...).

2. Derive a set of sensible actions (clicks, text input, mouse
gestures, ...).

3. Select and execute an action.

4. Apply an oracle to check whether the state is valid.
If it is invalid, stop sequence generation and save the
suspicious sequence to a dedicated directory, for replay.

5. If the given amount of sequences has been generated,
stop sequence generation, else go to step 1.

ID Component FileLocation Description Severity
1 Controller AccountController.php line 102 When clicking on ”no” for account deletion confirmation, the

system nevertheless deletes the account
M

2 Controller LoginController.php line 8 No login fields on login page H
3 Controller ProjectsController.php line 8 Empty page when accessing the project creation page H
4 Controller RamController.php line 31 Description is not added to the database when creating a com-

ponent
L

5 Controller RolesController.php line 48 Page not found error after editing a role M
6 Model DeploymentInstance.php line 10 ”An error occurred” message when trying to view properties of

a project
H

7 Model Module.php line 21 ”An error occurred” message when trying to add a module to a
project

H

8 Model Module.php line 34 ”An error occurred” message when trying to upload a new mod-
ule

M

9 Model Project.php line 36 ”An error occurred” message when trying to view managed
project (need to be a project manager)

H

10 Model ProjectModule.php line 29 ”An error occurred” message when trying to view properties of
a project

H

11 View ComponentSelection line 19 Empty page when trying to add a component to a project H
12 View Modules.php line 18 Allow empty content for module L
13 View ModuleSelection.php line 30 Empty page when trying to add a module to a project H
14 View RoleSelection.php lines 27 to 30 ”An error occurred” when trying to edit the role of a user of a

project
H

15 View Server.php line 42 The type of the server is missing M
16 View ServerSelection.php line 13 Empty form when trying to move a server L
17 View Users.php line 82 Editing is possible when accessing through view link and vice

versa
L

Table 1: Injected Faults

TESTAR uses the operating system’s Accessibility API to
recognize GUI controls and their properties and enables pro-
grammatic interaction with them. It derives sets of possible
actions for each state that the GUI is in and automatically
selects and executes appropriate ones in order to drive the
tests. In completely autonomous and unattended mode, the
oracles can detect faulty behaviour when a system crashes
or freezes. Besides these free oracles, the tester can easily
specify some regular expressions that can detect patterns of
suspicious titles in widgets that might pop up during the
executed tests sequences. For more sophisticated and pow-
erful oracles, the tester can program the Java protocol that
is used to evaluate the outcomes of the tests.

3.3.2 Testing currently at Softeam
Modelio SaaS’ testing and development team consists of 1

product director, 2 developers and 3 research engineers who
all participate in the testing process. The testing practice
at Softeam is to create test cases by relying on specified
use cases. Each test case describes a sequence of the user
interactions through the GUI as shown in Figure 1.

The test cases are managed with the TestLink4 software
and grouped as test suites according to the part of the sys-
tem that they enable to test. All them are executed manu-
ally by a test engineer. If a failure occurs, the test engineer
reports it to the Mantis5 bug tracking system and assigns it
to the developer in charge of the part affected by the failure.
He also provides the Apache log file for the web UI as well as

4http://sourceforge.net/projects/testlink/
5http://www.mantisbt.org/

the Axis log file for the web services. Then, Mantis mails the
developer in charge of examining/fixing the reported failure.

Softeam’s testing process in projects other than Modelio
SaaS is similar. A tester has access to the project specifica-
tions (most of the time a textual description).

3.4 Subjects - Who applies the techniques?
The subjects are two computer scientists that besides other

responsibilities for Modelio SaaS are responsible for testing
on the project. Subject one is a senior analyst (5 years), and
trainee two is a software developer with 10 years of experi-
ence. Both have less than one year of experience in software
testing and have previously modelled test cases using the
OMG UML Testing Profile (UTP) and the Modelio imple-
mentation of the UML Testing Profile. In a previous study
[8] they have obtained training in combinatorial testing. In
addition, both testers also claim to be proficient in Java, the
language used to develop and extend the TESTAR Tool.

3.5 The case study procedure
After TESTAR has been installed and a working testing

environment has been set-up, the case study is divided into
two phases (see Figure 2).

The Training Phase
During this phase, the subjects start to develop a work-
ing test environment for SOFTEAM’s case study system.
Challenges, difficulties and first impressions are gathered to
evaluate how well the subjects understood the concepts of
the technique and whether they are prepared to proceed to

INTRODUCTORY
COURSE

CONSOLIDATE FINAL
PROTOCOL

RUN THE
PROTOCOL

Level 2:
HANDS ON
LEARNING

TRAINING PHASE

Level 3:
PERFORMANCE

EXAMS

SUCCESS?
YES

SETTING-UP
A WORKING TEST

ENVIRONMENT

Example
SUTS

SOFTEAM

USER
MANUAL

INSTALLING
TOOL

Example
SUTS

 TESTING PHASE

EVALUATE
 TEST RESULTS

NO

TRAINER

PROTOCOL

SUFFICIENT
QUALITY?

YES

NO

WORKING
DIARIES PROTOCOLPROTOCOLPROTOCOL

EVOLUTIONS

LEARNABILITY-
QUESTIONNAIRE (A)

LEARNABILITY-
QUESTIONNAIRE (B)

SATISFACTION-
INTERVIEW

Level 1:
REACTION
EVALUATE

COURSE QUALITY
QUESTIONNAIRE

Figure 2: Case Study Procedure

the next phase. The following activities have been planned:
Presentational learning - The trainer gives an intro-

ductory course in which working examples are presented.
Example SUTs are unrelated to the case study system so
that the subjects get an insight into: How to setup TES-
TAR for a given SUT?, How to tell the tool which actions
to execute?, How to program an effective test oracle for dif-
ferent types of faults?, How to define the stopping criteria?.

Autonomous hands-on learning (i.e. learning by do-
ing) with online help from the trainer through Skype and/or
email. The subjects will apply the learned techniques to
setup a test environment for the selected SUT and write
evolving versions of a protocol for the TESTAR tool. They
will work together and produce one version of the TESTAR
protocol. Each tester documents their progress in working
diaries which contain information about: The activity that
has been performed and the minutes spent on each activ-
ity; The questions and doubts that the tester had at the
time he was doing this activity (so one can see if those were
solved in later learning activities); Versions and evolutions
of TESTAR protocols that are produced.

During the introductory course, audio-visual presentations
(i.e. tool demos, slides) were used. For supporting the
hands-on learning activities, the individual problem-solving
method was used. The important issues considered were
location and materials. The hands-on learning activities
were carried out at SOFTEAM premises. Before the ac-
tual hands-on part, an introduction in terms of a course was
given in-house at SOFTEAM. The training materials (e.g.
slides, example files) were prepared by the trainer.

The Testing Phase
The subjects will refine and consolidate the last protocol
made during the training phase work. This protocol will be
used for testing, i.e. the protocol is run to test the SUT and
the results are evaluated.

3.6 Measures
The independent variables of the study settings are: the

TESTAR GUI Testing Tool; the complexity of the SOFT
case study system (Modelio SaaS); level of experience of the
SOFT testers who will perform the testing. The dependent
variables are related to measuring the learnability, effective-

ness, efficiency and subjective user satisfaction of the TES-
TAR tool. Next we present their respective defined metrics.

Measuring Learnability - Following [5], learnability can
be understood and evaluated in two different ways: Initial
learning allows users to reach a reasonable level of usage
proficiency within a short time. But it does not account for
the learning that occurs after such a level has been reached;
Extended learning, in contrast to initial learning, considers
a larger scope and long term of learning. It applies to the
nature of performance change over time. In the presented
study, we are interested in assessing extended learnability.
For this purpose, the training program was designed in order
to develop an individual level of knowledge on GUI testing
and skills to use TESTAR.

In order to determine the effectiveness of the training pro-
gram, feedback from the subjects on the training program as
a whole was gathered in different ways. A levels-based strat-
egy, similar to [8], for evaluating the learning processes was
applied. Next we explain briefly each level that is used in
this study (the numbers correspond to the levels mentioned
in Figure 2) and the quantitative and qualitative measure-
ment that were carried out:

1. Reaction level: is about how the learners perceive and
react to the learning and performance process. This
level is often measured with attitude questionnaires
that are passed out after most training classes.

In our study this is operationalized by means of a
learnability-questionnaire (A) to capture first responses
(impressions) on the learnability of the tool. Moreover,
we will have a questionaire that concentrates on the
perceived quality of the course. introductory course.

2. Learning level: is the extent to which learners improve
knowledge, increase skill, and change attitudes as a
result of participating in a learning process.

In our study this is operationalized by means of self-
reports of working diaries were collected to measure
the learning outcomes; and the same learnability ques-
tionnaire (B) to capture more in-depth impressions af-
ter having used the tool during a longer time.

3. Performance level: involves testing the learner’s ca-

pabilities to perform learned skills while on the job.
These evaluations can be performed formally (testing)
or informally (observation).

In our study this is operationalized by means of 1)
using a measure adapted from [5] related to actual on-
the-job performance, in this case evolution and sophis-
tication of the developed artifacts (oracle, action def-
inition, stopping criteria) over a certain time interval;
and 2) conducting a performance exam.

Measuring Effectiveness was done during the testing
phase. For test suites TSSoft and TSTestar we measured:

1. Number of failures observed by both test suites. The
failures relate to the ones in Table 1 that were injected
into the current version of Modelio SaaS.

2. Achieved code coverage (We measured the line cover-
age of the PHP code executed by both test suites. We
took this as an indicator of how “thorough” the SUT
has been executed during the testing process)

Measuring Efficiency was done during the testing phase.
For both TSSoft and TSTestar and measured:

1. Time needed to design and develop the test suites. In
the case of TESTAR we took the time that was neces-
sary to develop the oracle, action definitions and stop-
ping criteria.

2. Time needed to run TSSoft and TSTestar.

3. Reproducibility of the faults detected.

Measuring Subjective Satisfaction is done after the
testing phase has been completed and consists of:

1. Reaction cards session: each subject selects 5 cards
that contain words with which they identify the tool
(for the 118 words used see [4]).

2. Informal interview about satisfaction and perceived
usefulness that is setup around the questions: Would
you recommend the tool to your peers or persuade your
management to invest? If not why? If yes, what argu-
ments would you use?

3. Face questionnaires to obtain information about sat-
isfaction through facial expressions. The informal in-
terview from above will be taped and facial expression
will be observed following the work in [4]. The pur-
pose of the face questionnaire is to complement the
satisfaction interview in order to determine whether
their gestures harmonize with their given answers.

4. DATA COLLECTION
Data collection methods6 included the administration of

two questionnaires, test-based examination, working diaries,
inspection of different TESTAR protocol artifacts (oracle,
action, stopping), as well as video-taped interviews with the
subjects.

Regarding to the working diaries, the trainees reported
all the activities carried out over the hands-on learning pe-
riod without a pre-established schedule. Table 2 shows the
description data for these activities.
6All materials can be found here: https://staq.dsic.upv.
es/papers/softeam-TESTAR/index.html

Time reported (min)
Activities S1 S2 In Pairs
Oracle design + impl 1200 30 30
Action definition + impl 820 30 20
Stopping Criteria 30 0 10
Evaluating run results 240 20 30
Skype meeting with trainer 60 10 15

Total time 2350 90 105

Table 2: Self-reported activities during the hands-on
learning process

Description
Test Suite

TSSoft TSTestar

Faults discovered 14 + 1 10 + 1
Did not find IDs 1, 9, 12 1,4,8,12,14,15,16
Code coverage 86.63% 70.02%
Time spent on development 40h 36h
Run time manual automated

1h 10m 77h 26m
Faults diagnosis and report 2h 3h 30m
Faults reproducible 100% 91.76%
Number of test cases 51 dynamic

Table 3: Comparison between tests

Figure 3 shows the quality of the different TESTARs se-
tups, as rated by the trainer. The trainer rated each artifact
of a version separately, i.e. oracle, action set and stopping
criterion on a scale from 0 to 5 as if it was a student sub-
mitted assignment.

Figure 3: Evolution of artifact quality as rated by
the trainer

Table 3 shows the descriptive values of bot test suites con-
sidered in this study: the existing manual test suite (TSSoft)
and the test suite generated by our tool (TSTestar).

During the study we have used two questionnaires. The
first is the questionnaire that evaluates the quality of the
training course: its contents, the allocated time, and the
provided materials. This questionaire contains one item in
5-points ordinal scale and six items in 5-points likert scale.

The learnability questionnaire is used to measure per-

ceived learnability of the tool. The same questionnaire is
applied at point A, after the course but before the hands-on
learning, and at point B, after the hands-on learning. The
questions have been taken from [9] where the authors are
analyzing the learnability of CASE tools. They have been
divided into 7 categories to separate different aspects of the
tool. It consists of 18 items in 5-points likert scale.

5. ANALYSIS
RQ1: How learnable is the TESTAR tool when it is used by
testing practitioners of SOFTEAM?

Empirical data was collected in order to analyze learnabil-
ity at the three identified different levels.

Reaction (level 1) - Responses from two questionnaires
about first impressions of the course (quality and learnability
(A)) and another one applied after the test exam (learnabil-
ity B) were analyzed. With respect to the course (at level
1), both respondents showed to be satisfied with the content
of the course, and the time allocated for it. The practical
examples during the course were perceived as very useful to
understand the GUI testing concepts. Both subject S1 as
S2 highlighted that it was very easy to get started and to
learn how to first approach the use of the tool through the
provided user manual, the testers were able to use the basic
functionalities of tool right from the beginning and liked the
friendliness and cleanness of the environment.

Learning (Level 2) - If we look at the self-reported ac-
tivities during the hands-on process in Table 2 we see that
subject 1 spend considerable more time than subject 2. This
was due to unforeseen workload of S2 that in industrial en-
vironments cannot always be planned nor ignored. The role
of S2 was reduced to that of revising the outcomes of the
tests of S1 and being informed about the tool’s features.

From the self-reported activities, and based on the opinion
of the trainer, it could be deduced that the testers had a few
problems with the definition of the TESTAR’s action set.
This set defines the TESTAR’s behaviour and is crucial to
its ability to explore the SUT and trigger crashes. Action
definitions comprise the description of trivial behaviour such
as clicks and text input, as well as more complicated drag
and drop and mouse gestures.

With respect to the perceived learnability of the tool, we
found that after one month of using the tool during the
hands-on learning (see Table 2 for the time that was spend
by each subject), their impressions on the training material
had changed slightly. Both respondents found that the tool
manuals would have to be extended with further explana-
tions in particular on how to customize the tool by using its
API methods, in particular on how to setup powerful oracles
that detect errors in the SUT and how to setup powerful ac-
tion sets that drive the SUT and allow to find problematic
input sequences.

Moreover, it turned out that the concept of ‘powerful’
oracle was not totally understood after the course. First
impressions were that the oracles were easy to set up (reg-
ular expressions) and quite powerful (since within a short
period of time and without hardly any effort some of the
injected faults were found). However, these are not what is
considered a ‘powerful’ oracle because of the lack of ‘power’
to detect more sophisticated faults in the functionality of
the applications. During the hands-on training it was real-
ized that setting up more sophisticated oracles was not as
easy as considered in the beginning, and programming skills

and knowledge of the SUT were needed. The need to do
Java programming to set-up tests caused some initial resis-
tance towards the acceptance of the technique. However, by
comparing them to the alternative of more expensive and
complex human oracles and explaining the need to program
these oracles in order to automate an effective testing pro-
cess, consciousness was raised. Initial resistance was turned
into quite some enthusiasm to program the oracles, such
that the last versions even contain consistency checks of the
database underlying the SUT.

Performance (Level 3) - In order to analyse the ac-
tual performance level of the subjects, the evolution of the
artefacts generated during training and testing phases were
studied. Throughout the course of the case study, the testers
developed 4 different versions of the TESTAR’s setup, with
increasing complexity and power.

The first set-up offered a rather trivial oracle, which scraped
the screen for critical strings such as ”Error” and ”Excep-
tion”. The testers supplied these strings in the form of regu-
lar expressions. Obvious faults such as number 6 (see Table
1 for the list of injected faults) are detectable with this strat-
egy. However, this heavily relies on visible and previously
known error messages. More subtle faults, such as number
16 are not detectable this way.

The second oracle version made use of the web server’s
logging file which allowed to detect additional types of faults
(e.g. errors caused by missing resource files, etc.).

Versions 3 and 4 also incorporated a consistency check of
the database used by Modelio SaaS. Certain actions such
as the creation of new users, access the database and could
potentially result in erroneous entries. The more powerful
database oracle in version 3, requires appropriate actions,
that heavily stress the database. Thus, the simulated users
should prefer to create / delete / update many records. Ver-
sion 4 also defined a better test stopping criteria indicating
when tests were considered enough.

Figure 3 shows the quality of the different TESTAR’s se-
tups, as rated by the trainer on a scale from 0 to 5. The
perceived quality increases with each version and eventu-
ally reaches a sufficient level in the last one. Although,
the trainer is not entirely satisfied with the quality of the
testers’ action definitions and stopping criteria, this coin-
cides with the difficulties mentioned by the trainees. Overall,
the graphic shows a clear increase in sophistication, indicat-
ing the ability of the testers to learn how to operate the tool
and create more powerfull oracles.

RQ2: How does TESTAR contribute to the effectiveness
and efficiency of testing when it is used in real industrial
environments and compared to the current testing practices
at SOFTEAM?

To answer the research questions regarding the efficiency
and effectiveness of TESTAR, we collected data of the exist-
ing manual test suite (TSSoft) and the test suite generated
by the TESTAR tool (TSTestar) (see Table 3). To obtain
data for TSTestar we used the last of the 4 versions of the
setup for TESTAR created during the learning phase. How-
ever, the measure ‘time spent on development’ also includes
the time necessary to develop the earlier versions in the de-
velopment time, since these intermediate steps were neces-
sary to build the final setup. To measure the variable values
for TSSoft we employed Softeam’s current manual test suite
for which the company has information about man hours

dedicated to its development.
TSSoft consists of a fixed set of 51 hand-crafted test cases,

whereas TSTestar does not comprise specific test cases, but
rather generates them as needed. Softeam reported to have
spent approximately 40 hours of development time on craft-
ing the manual test cases, which roughly equals the 36 hours
that their testers needed to setup TESTAR for the final test
(including earlier setup versions).

The testers took about 3 hour to execute all manual test
cases, identify the fault and report them. TESTAR simply
ran automatically for about 77 hours. Of course they could
have decided to perform a shorter run, but since the tool
works completely automatic and ran over night, it did not
cause any manual labour. The only thing that the testers
had to do, in the mornings, consisted of consulting the logs
for potential errors, report these. This took about 3,5 hours.

In terms of code coverage, the manual suite outperformed
the automatically generated tests. However, the difference
of approximately 16% is modest. Manual testing allows the
tester to explore forms that might be locked by passwords or
execute commands that require specific text input. A way to
enable TESTAR to explore the GUI more thoroughly, would
be to specify more complex action sets. We consider this as
a plausible cause, as the trainer pointed out, that he was not
entirely satisfied with the action definitions that the testers
designed (see Figure 3).

Considering the amount of seeded faults that have been
detected by both suites, the manual tests, unsurprisingly,
outperformed those generated by the TESTAR tool. TSSoft

detected 14 of the seeded faults and the testers even found a
previously unknown error. All of the erratic behaviors were
reproducible without any problems. TSTestar, on the other
hand, detected 11 faults, including the previously unknown
one. However, as expected, the tool had problems detect-
ing certain kinds of faults, since it can be hard to define
a strong oracle for those. Examples include errors similar
to number 16 (Figure 1). Nevertheless, obvious faulty be-
haviour, which often occurs after introducing new features
or even fixing previous bugs, can be detected fully auto-
matic. However, if we look at the severity of the faults that
were not found by TESTAR, we can see that 4 have severity
Low, 2 have Medium and only one has High severity. On
the other hand, the fault that was found by TESTAR and
not by the manual test suite has high severity. So, given
the low amount of manual labour involved in finding those,
the TESTAR tool can be a useful addition to a manual suite
and could significantly reduce manual testing time. One def-
inite advantage, that TESTAR has over the manual suite is,
that the setup can be replayed arbitrary amount of times,
at virtually no cost, e.g. over night, after each new release.
The longer the tool runs, the more likely it is to detect new
errors. We think that the development of a powerful oracle
setup pays of in the long term, since it can be reused and
replayed automatically.

Finally, looking at the reproducibility of the faults, some-
times a test triggers a fault that is hard to reproduce through
a subsequent run of the faulty sequence. Sometimes the en-
vironment is not in the same state as it was during the time
the fault was revealed, or the fault is inherently indetermin-
istic. The timing of the tool used for replay can have a
major impact. Of the faults reported by the TESTAR tool,
around 8% of the faults found were not reproducible. The
others could be traced back to the injected faults.

RQ3: How satisfied are SOFTEAM testers during the in-
stallation, configuration and application of the tool when ap-
plied in a real testing environment?

A first source that we used to gain insight into the testers’
mind were reaction cards as defined in [4]. We gave the
testers a list of words and asked them to mark the ones, that
they associate the most with the TESTAR tool. The words
chosen by the two subjects had a positive connotation (such
as “Fun”, “Desirable”, “Time-Saving”, “Attractive”, “Moti-
vating”, “Innovative”, “Satisfying”, “Usable”, “Useful” and
“Valuable”) coinciding with their overall positive attitude
towards the tool and the case study.

During the informal interview, when asked if they would
recommend the tool to their peer colleagues: Subject 1 an-
swers positively and would use the following arguments: the
TESTAR tool is quite suitable for many types of applica-
tions; it can save time, especially in the context of simple
and repetitive tests. This allows testers to concentrate on
the difficult tests which are hard to automate. Also subject
2 is positive about the tool and wants to add the argument
that it is very satisfying to see how easy it is to quickly set
up basic crash tests.

On the negative side, both testers agree on the necessity to
improve the tool’s documentation: basically improvements
related to action definitions and oracle design. Also some
installation problems were mentioned.

When asked if they think they can persuade their man-
agement to invest in a tool like this, both subjects are a
bit less confident. They argue that the benefits of the tool
need to be studied during a longer period of time, especially
maintenance of the test artefacts would need to be studied
in order to make a strong business case and claim Return
of Investment to convince the many people in the manage-
ment layer. However, Subject 2 – being positive by nature –
thinks that although in need of strong arguments, convinc-
ing management people is not impossible.

Finally, to cross-validate the testers claims, we video taped
the testers while responding to the questions, and conducted
a face questionnaire as described in [4]. The results of this
analysis coincides with the findings from above and is sum-
marized in the Appendix.

6. THREATS TO VALIDITY
Construct validity reflects to what extent our operational

measures really represent what is investigated according to
the research questions. In our case, although the learnabil-
ity evaluation was based on a four-level strategy [9] that
we have used before, some of the threats could not be fully
mitigated, at least, for the two first levels (Reaction and
Learning). This is because most of the collected data was
based on trainee’s responses. However, in order to reduce
possible misinterpretations of formulated questions and an-
swers gathered, data analyzed and interpreted by the second
author was also validated by the respondents (trainees).

Internal validity is of concern when causal relations are ex-
amined. Although learning (level 2) and performance (level
3) criteria are conceptually related [9], this threat was not
mitigated because environmental variables of the hands-on
learning process could not be monitored. Only working di-
aries were self-reported by the trainees.

External validity is concerned with to what extent it is
possible to generalize the findings, and to what extent the

findings are of interest to other people outside the investi-
gated case. Statistical generalization is not possible from a
single case study but the obtained results about the learn-
ability of the TESTAR tool need to be evaluated further
in different contexts. However, these results could be rele-
vant for other companies like SOFTEAM, whose staff has
experience in software testing, but is still very motivated to
enhance its actual testing process. Regarding to the system
under test (SUT), it was carefully selected by the trainees
with the approbation of the rest of the research team (UP-
VLC) and management staff of SOFTEAM. So, the selected
SUT is not only relevant from a technical perspective, but
also from an organizational perspective, which facilitated to
perform all the case study activities.

Reliability is concerned with to what extent the data and
the analysis are dependent on the specific researchers. All
the formulated questions were reviewed, in terms of clarity,
by other three volunteer colleagues from UPVLC. A detailed
protocol was also developed and all data collected was ap-
propriately coded and reviewed by case subjects.

7. CONCLUSIONS
We have presented a case study for evaluating TESTAR

[3] with real users and real tasks within a realistic environ-
ment of testing Modelio SaaS of the company SOFTEAM.

Although a case study with 2 subjects will never provide
general conclusions with statistical significance, the obtained
results can be generalized to other testers of Modelio SaaS
in the testing environment of SOFTEAM [10, 6]. Moreover,
the study was very useful for technology transfer purposes:
some remarks during the informal interview indicate that
the tool would not have been evaluated in so much depth if
it would not have been backed up by our case study design.
Also, having only two real subjects available, this study took
a month to complete and hence we overcame the problem of
getting too much information too late. Finally, we received
valuable feedback on how to evolve the tool and its related
documentation and course materials.

The following were the results of the case study:
1) The SOFTEAM subjects found it very easy to get

started with the tool and to learn how to use the tool’s
default behaviour (i.e. free oracles and random actions)
through the provided user manual, the testers were able to
use the basic functionalities of tool right from the beginning
and liked the friendliness and cleanness of the environment.

2) Programming more sophisticated oracles customizing
the Java protocol raised some problems during the learn-
ing process of the SOFTEAM subjects. The problems were
mainly related to the understanding of the role of oracles
in automated testing. In the end, in pairs and with the
guidance of the trainer, the subjects were capable to pro-
gram the tool in such a way that it detected a fair amount
of injected faults. This gives insight into the training ma-
terial and the user manual that needs to be improved and
concentrate more on giving examples and guidance on more
sophisticated oracles. Also, we might need to research and
develop a wizard that can customize the protocol without
Java programming.

3) The effectiveness and efficiency of the automated tests
generated with TESTAR can definitely compete with that of
the manual tests of SOFTEAM. The subjects felt confident
that if they would invest a bit more time in customizing the
action selection and the oracles, the TESTAR tool would

do as best or even better as their manual test suite w.r.t.
coverage and fault finding capability. This could save them
the manual execution of the test suite in the future.

4) The SOFTEAM subjects found the investment in learn-
ing the TESTAR tool and spending effort in writing Java
code for powerful oracles worthwhile since they were sure
this would pay off the ore often the tests are run in an au-
tomated way. They were satisfied with the experience and
were animated to show their peer colleagues. To persuade
management and invest some more in the tool (for example
by doing follow-up studies to research how good the auto-
mated tests can get and how re-usable they are amongst
versions of the SUT) was perceived as difficult. Neverthe-
less, enthusiasm to try was definitely detected.

In summary, despite criticism regarding the documenta-
tion and installation process of the tool, the testers’ reactions
and statements encountered during the interviews and the
face questionnaire, indicate that they were satisfied with the
testing experience. We came to a similar conclusion regard-
ing the tool’s learnability. Although, the trainer reported
certain difficulties with the action set definition, the con-
stant progress and increase of artefact quality during the
case study, points to an ease of learnability. These items
will be improved in future work to enhance the tool.

8. REFERENCES
[1] A. Bagnato, A. Sadovykh, E. Brosse, and T.E.J. Vos.

The omg uml testing profile in use–an industrial case
study for the future internet testing. In Software
Maintenance and Reengineering (CSMR), 2013 17th
European Conference on, pages 457–460, 2013.

[2] S. Bauersfeld, A. de Rojas, and T. E. J. Vos.
Evaluating rogue user testing in industry: an
experience report. In Proceedings of 8th International
Conference RCIS. IEEE, 2014.

[3] S. Bauersfeld and T. E. J. Vos. Guitest: a java library
for fully automated gui robustness testing. In Proc of
the 27th IEEE/ACM ASE 2012, pages 330–333.

[4] J. Benedek and T. Miner. Measuring desirability: New
methods for evaluating desirability in a usability lab
setting. Proceedings of Usability Professionals
Association, Orlando, USA, 2002.

[5] T. Grossman, G. Fitzmaurice, and R. Attar. A survey
of software learnability: Metrics, methodologies and
guidelines. In SIGCHI Conference on Human Factors
in Computing Systems, pages 649–658. ACM, 2009.

[6] Warren Harrison. Editorial (N=1: an alternative for
software engineering research). Empirical Software
Engineering, 2(1):7–10, 1997.

[7] B. Kitchenham, L. Pickard, and S.L. Pfleeger. Case
studies for method and tool evaluation. Software,
IEEE, 12(4):52 –62, July 1995.

[8] P.M. Kruse, N. Condori-Fernandez, T.E.J. Vos,
A. Bagnato, and E. Brosse. Combinatorial testing tool
learnability in an industrial environment. In ESEM
2013, pages 304–312, Oct 2013.

[9] M. Senapathi. A framework for the evaluation of case
tool learnability in educational environments. Journal
of Information Technology Education: Research,
4(1):61–84, January 2005.

[10] A. Zendler, E. Horn, H. Schwartzel, and E. Plodereder.
Demonstrating the usage of single-case designs in

experimental software engineering. Information and
Software Technology, 43(12):681 – 691, 2001.

APPENDIX
A. FACES QUESTIONNAIRE

Faces were rated with a scale from 1 to7 where 1 repre-
sented ”Not at all” and 7 represented ”Very much”.

Would you recommend Could you pursuade
the tool to your colleagues? your management to invest?

1 2 3 4 5 6 7
X

1 2 3 4 5 6 7
X

Would you recommend Could you pursuade
the tool to your colleagues? your management to invest?

1 2 3 4 5 6 7
X

1 2 3 4 5 6 7
X

Acknowledgements
This work was financed by the FITTEST (Future Internet
Testing) project, ICT-2009.1.2, no 257574.

