
GUITest: A Java Library for Fully Automated GUI
Robustness Testing

Sebastian Bauersfeld
Universitat Politècnica de València

Camino de Vera s/n
Valencia, Spain

sbauersfeld@pros.upv.es

Tanja E. J. Vos
Universitat Politècnica de València

Camino de Vera s/n
Valencia, Spain

tvos@pros.upv.es

ABSTRACT
Graphical User Interfaces (GUIs) are substantial parts of to-
day’s applications, no matter whether these run on tablets,
smartphones or desktop platforms. Since the GUI is often
the only component that humans interact with, it demands
for thorough testing to ensure an efficient and satisfactory
user experience. Being the glue between almost all of an ap-
plication’s components, GUIs also lend themselves for sys-
tem level testing. However, GUI testing is inherently diffi-
cult and often involves great manual labor, even with mod-
ern tools which promise automation. This paper introduces
a Java library called GUITest, which allows to generate fully
automated GUI robustness tests for complex applications,
without the need to manually generate models or input se-
quences. We will explain how it operates and present first
results on its applicability and effectivity during a test in-
volving Microsoft Word.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Software Testing

Keywords
Gui Testing, Automated Testing, Robustness Testing

1. INTRODUCTION
Graphical User Interfaces (GUIs) represent the main con-

nection point between a software’s components and its end
users and can be found in almost all modern applications.
Vendors strive to build more intuitive and efficient interfaces
to guarantee a better user experience, making them more
powerful but at the same time more complex. Especially
since the rise of smartphones and tablets, this complexity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3–7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$10.00.

has reached a new level and threatens the efficient testa-
bility of applications at the GUI level. To cope with this
challenge, it is necessary to automate the testing process.

Capture and Replay (CR) tools promise to automate test-
ing at the GUI level. However, they have always been con-
troversial, since they require a great amount of manual ef-
fort on the part of the testers [6], who still need to record
and maintain input sequences. Especially in the context of
frequently changing GUIs, CR tools generate high mainte-
nance costs. Despite its disadvantages, the CR method can
be valuable, since the test cases are generated by humans
with domain knowledge. However, the complexity of today’s
GUIs, the manual labor associated with testing them and
the resulting maintenance costs, call for a complementary
method with a truly automatic test environment. In this
environment test case generation, execution and evaluation
should be performed without human intervention. This is
quite difficult, because GUIs are designed to be accessed by
humans, not programs. A program needs to programmati-
cally access the GUI’s state in order to be able to simulate
human-like behavior in the form of clicks, keystrokes and
gestures. Therefore, we developed GUITest1, a Java library
which allows to write automated robustness tests for com-
plex graphical applications. In the following we will explain
how GUITest works, why and how it is different from exist-
ing tools and libraries and how it performed during a first
test involving a complex, non-Java desktop application.

2. THE APPROACH
Figure 1 visualizes the basic procedure that a human goes

through when using a graphical user interface. In picture
(a) we can see a phone’s application panel with the corre-
sponding icons. Just by looking at the screen, most humans
intuitively know which actions can be executed in this par-
ticular state. One could for example tap one of the five app
items or swipe to the left or right in order to reveal addi-
tional ones. If the user clicks on the lower left item (b) a
browser app will start (c), offering a variety of actions to
choose from (d). After for example tapping the search field,
a virtual keyboard will appear (e) and again he will have to
make a decision on which action to execute. By repeating
this process, one can generate arbitrary input sequences and
thus drive the GUI.

In order for a program to drive the GUI in a similar man-
ner, it is necessary to gather enough information about the
GUI’s state, which constitutes the state of its widgets (i.e.

1Videos and screenshots available at https://staq.dsic.
upv.es/sbauersfeld/index.html

https://staq.dsic.upv.es/sbauersfeld/index.html
https://staq.dsic.upv.es/sbauersfeld/index.html

type: Screen

type: Button
text: "Contacts"
x: 20
y: 20
width: 80
...

type: Button
text: "Game Center"
x: 120
y: 20
width: 80
...

type: Button
text: "Settings"
x: 220
y: 20
width: 80
...

type: Button
text: "Safari"
x: 120
y: 20
width: 80
...

type: Button
text: "Photos"
x: 220
y: 20
width: 80
...

Figure 2: Widget Tree for picture a) of Figure 1.

control elements). To be able to perform sensible actions,
it needs to determine the type, position, size and other at-
tributes of all widgets visible in a certain state. GUITest
can determine the current GUI state of the System Under
Test (SUT) in the form of a widget tree. A widget tree is
a hierarchical composition of the widgets currently visible
on the screen, together with the values of associated wid-
get attributes. Figure 2 shows an example of such a tree
for picture (a) . With this information, an automatic test-
ing program can compute sensible default actions: Enabled
buttons, icons and hyperlinks can be tapped, text fields can
be tapped and filled with text, the screen, scrollbars and
sliders may be dragged, etc. GUITest allows to simulate
simple (clicks, keystrokes) as well as complex actions (drag
and drop operations, handwriting and other gestures, etc.)
and can thus drive even sophisticated GUIs. Table 1 lists
some of GUITest’s features.

Table 1: GUITest Features

– implemented in Java
– currently supported OSs: MacOS 10.3 and newer
– platform independent and extensible design
– works with all native applications and applica-

tions that support the MacOSX Accessibility API
– SUT requires no instrumentation
– allows web testing through the Safari browser
– derives sensible default actions for each GUI state
– allows the definition of custom actions
– generated sequences can be saved and replayed
– allows the implementation of fine-grained oracles

for fault detection

3. A FIRST TEST
To evaluate GUITest’s functionality, we implemented a ro-

bustness test for Microsoft Word for Mac2. The goal was to
develop a program which generates random input sequences
and automatically detects crashes of the SUT. We consid-
ered the SUT to have crashed if a) it unexpectedly termi-
nated or b) the GUI did not respond to inputs during more
than 60 seconds. We leveraged GUITest’s functionality to

2http://www.microsoft.com/mac/word

write a completely automated test which requires no super-
vision. Therefore we had to

• supply the name of Word’s executable and the location
of its configuration files: The configuration files need
to be restored before each execution of Word in order
to ensure identical startup conditions during sequence
generation and playback. If these conditions differ (for
example due to a previous run which changed values
in the options dialog) one might not be able to replay
crashing sequences.

• define the set of actions to execute: As mentioned ear-
lier, GUITest already derives default actions for the
majority of widgets. However, one might want to in-
clude additional actions, like dragging clip art symbols
into the document (see Figure 3). It might also be nec-
essary to disallow certain actions, for example: During
our initial tests the program executed the“Shut Down”
and “Restart” menu items in the system menu, which
consequently terminated the entire machine. Other is-
sues arose in the context of file dialogs: Within such
dialogs the program can create, delete or move files,
which might cause severe damage, depending on where
in the file system it is browsing. Print dialogs and the
like should also be treated carefully. Figure 3 shows
typical actions which can be executed as well as certain
widgets for which we intentionally disallowed actions
(notice the print, save and open tool items as well as
the Apple and“Word”menu items). Eventually, we ran
the program in a dedicated user account with stricter
access rights in order to prevent potential damage.

We limited the length of the generated sequences to 200
actions in order to be able to replay crash runs. After
each run, the test program stopped the SUT, saved the se-
quence (if it caused a crash), restored the configuration files,
restarted the SUT and went on to generate the next test
case. Altogether, we wrote four Java class files with a total
of 314 LOC. The automated test ran for 18 hours resulting
in 672 generated sequences. Nine of these sequences caused
Microsoft Word to crash and display an error message. Six of
these we were able to reproduce. Three, however, were diffi-
cult to replay, as the timing during playback played an im-
portant role: During some runs a sequence crashed the SUT,
yet during others it passed through without any problems.
We believe that this is related to external factors (mem-
ory consumption, processor utilization, thread scheduling...)
which are hard to control. We are currently working to im-
prove sequence playback and are considering the use of a
virtual machine which could give better control over those
conditions. Another option would be to video record the
entire testing process which would make sequence playback
unnecessary.

4. OTHER TOOLS AND TECHNOLOGIES
There are various tools available for GUI testing, includ-

ing commercial, open source and scientific products. A large
part of them falls into the capture and replay (CR) or script-
ing categories. Popular commercial tools are eggPlant3,

3http://www.testplant.com/products/eggplant/

http://www.microsoft.com/mac/word
http://www.testplant.com/products/eggplant/

a) b) c) d) e)

Figure 1: Sequence generation: (a) The current state of the GUI. (b) GUITest derived a set of sensible
actions which can be executed in this state. By selecting and performing the action “Click Safari Item” the
GUI’s state changes (c) which reveals further actions (d). After performing the action “Click Text Box”, a
virtual keyboard appears (e).

Figure 3: This is a screenshot of GUITest’s demonstration mode, which displays possible actions within a
particular GUI state. It includes clicks, text input (“Test123”) and drag and drop operations.

TestComplete4 or QF-Test5. Among the open source tools
are Abbot6, Selenium7 and SWTBot8. As mentioned ear-
lier, these tools often induce a lot of manual labor, espe-
cially when a GUI is subject to frequent changes so that
recorded test cases break and need to be repaired. However,
since the test cases are recorded by humans (potentially with
good knowledge about the SUT), they can be very effective.

There have been a few scientific approaches to GUI testing
which are more automatic than the CR method: An inter-
esting one has been realized within the GUITAR framework9

developed under the lead of Atif Memon. Their idea is to
walk through the GUI (by systematically clicking on wid-
gets) and to automatically generate a model (in the form
of an event flow graph) from which they derive test cases
by applying several coverage criteria. [4] gives an overview
over their work. Unfortunately, in their experiments they
only test small Java applications (some of them are syn-
thetic, some are part of a small office suite developed by stu-
dents) which they execute by performing clicks only. They
have problems with the execution of their sequences, since
the GUI model they are derived from is an approximation.
Thus, they generate short sequences (3 to 20 actions) which
they then automatically repair by applying a genetic algo-
rithm.

Artzi et al.[1] perform feedback-directed random test case
generation for JavaScript web applications. Their objectives
are to find test suites with high code coverage as well as se-
quences that exhibit programming errors, like invalid-html
or runtime exceptions. They developed a framework called
Artemis, which triggers events by calling the appropriate
handler methods and supplying them with the necessary
arguments. To direct their search, they use prioritization
functions: They select event handlers at random, but pre-
fer the ones for which they have achieved only low branch
coverage during the past sequences.

Marchetto and Tonella [5] generate test suites for AJAX
applications using metaheuristic algorithms. They execute
the applications to obtain a finite state machine. The states
in this machine are instances of the application’s DOM-tree
(Document Object Model) and the transitions are events
(messages from the server / user input). From this FSM
they calculate the set of semantically interacting events. The
goal is to generate test suites with maximally diverse event
interaction sequences, i.e. sequences where each pair of con-
secutive events is semantically interacting.

The strength of our approach is, that it works with large,
native applications which it can drive using complex actions.
The abovementioned approaches either invoke event han-
dlers (which is not applicable to many GUI technologies) or
perform only simple actions (clicks). Moreover, our tech-
nique neither involves manual labor (generation of input se-
quences or models) nor requires the SUT’s source code for
instrumentation. While this is also true for the approach
presented in [4], they only generate short sequences of which
many are invalid. Thus, these sequences need to be re-
paired, which, according to the authors, can take days or

4http://smartbear.com/products/qa-tools/
automated-testing-tools
5http://www.qfs.de/en/qftest/index.html
6http://abbot.sourceforge.net
7http://seleniumhq.org/
8http://www.eclipse.org/swtbot
9Download: http://sourceforge.net/projects/guitar/

even weeks. Finally, the presented technique has very low
maintenance costs, since the tests will continue to work even
if the GUI changes. We are aware, however, that currently
our approach is quite simple (random action selection) and
only suitable for finding severe faults which cause crashes. It
might benefit from ideas of the abovementioned approaches,
as well as vice versa.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented a robustness test for Microsoft

Word, implemented with the help of our GUI testing library
GUITest. Despite the simplicity of this test, the results are
quite promising and show the applicability of this approach
even for large scale GUI applications with complex inter-
faces. In the future we will focus on the following aspects:

1. More sophisticated action selection: We plan to apply
machine learning techniques and metaheuristics to find
sequences which are more likely to crash the SUT (e.g.
sequences that consume a lot of memory or have long
execution times). In earlier works [3, 2] we presented
some ideas of how this could work.

2. Fine-grained oracles: We will strive to detect faults
other than crashes. The focus is on automated tech-
niques which learn to distinguish correct from erro-
neous behavior.

3. Other GUI technologies: Currently, GUITest only sup-
ports applications running under MacOSX. We have
conducted feasibility studies for other platforms and in
the future plan to support Windows. We also consider
to implement the approach for a tablet or smartphone
platform.

6. ACKNOWLEDGMENTS
This work is supported by EU grant ICT-257574 (FITTEST).

7. REFERENCES
[1] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip.

A framework for automated testing of javascript web
applications. In ICSE’11, 2011.

[2] S. Bauersfeld, S. Wappler, and J. Wegener. An
approach to automatic input sequence generation for
gui testing using ant colony optimization. In
GECCO’11, 2011.

[3] S. Bauersfeld, S. Wappler, and J. Wegener. A
metaheuristic approach to test sequence generation for
applications with a gui. In SSBSE’11, 2011.

[4] S. Huang, M. B. Cohen, and A. M. Memon. Repairing
gui test suites using a genetic algorithm. In ICST’10,
2010.

[5] A. Marchetto and P. Tonella. Using search-based
algorithms for ajax event sequence generation during
testing. Empirical Softw. Engg., 2011.

[6] A. M. Memon. A comprehensive framework for testing
graphical user interfaces. PhD thesis, University of
Pittsburgh, 2001.

http://smartbear.com/products/qa-tools/automated-testing-tools
http://smartbear.com/products/qa-tools/automated-testing-tools
http://www.qfs.de/en/qftest/index.html
http://abbot.sourceforge.net
http://seleniumhq.org/
http://www.eclipse.org/swtbot
http://sourceforge.net/projects/guitar/

	Introduction
	The Approach
	A First Test
	Other Tools and Technologies
	Conclusions and Future Work
	Acknowledgments
	References

