
TESTAR

User Manual

Version 1.2

Tanja E. Vos

Urko Rueda Molina

Mirella Mart́ınez

Francisco Almenar

Anna I. Esparcia

contact: testar@staq.upv.es

Contents

1 Requirements 3

2 Installing TESTAR 3

3 Starting TESTAR 3

4 Setting up your tests 4
4.1 General Settings Tab . 4
4.2 Filter Tab . 5
4.3 Specifying simple Oracles . 6
4.4 Time Settings Tab . 8
4.5 Miscellaneous Tab . 10
4.6 Specifying Advanced Oracles . 11

5 Running the tool 13
5.1 Action Visualization in Spy-Mode . 13
5.2 Widget tree visualization . 14
5.3 Test sequence generation and execution . 15

6 Viewing and replaying the results 16

7 Further documentation 18

8 Experimental features 18

9 Known issues 18

10 Acknowledgements 19

11 Appendix 20
11.1 Keyboard shortcuts . 20
11.2 Directories . 20

1

List of Figures

1 TESTAR’s main screen . 4
2 General Settings Tab . 6
3 Filters Tab . 7
4 Oracle Tab . 8
5 Time Settings Tab . 9
6 Misc Tab . 10
7 TESTAR’s protocol editor . 11
8 TESTAR’s workflow . 12
9 Widget’s properties . 14
10 Hierachical relationship between widgets . 15
11 Output directory . 17

List of Tables

1 Visualization in Spy-Mode . 13
2 Shortcuts . 20
3 Directories . 20

Listings

1 The Java Methods that can be customized . 12

2

1 Requirements

The current version of TESTAR runs on Windows 7 64 bit. To ensure that TESTAR runs
on your system you need to install the Java Development Kit (JDK) x64 in version 1.8.

2 Installing TESTAR

TESTAR comes in a file called TESTAR vX.X win x64.zip, which contains all files necessary
for its execution. Just unzip this file into a directory with write-access.
There is no setup routine.

3 Starting TESTAR

Within the main directory you will find several files, which are crucial for the execution of
TESTAR. The most important one is testar.bat. Double-click on it and TESTAR will start
and display the main screen: If TESTAR was not initiated, it is probable that Java 8 x64
was not correctly identified. You might either run testar.jar by double clicking on it, or try
to fix testar.bat to set the correct Java version in your environment.

As shown in the picture 1, the main screen contains four buttons, which start TESTAR
into its four main modes:

1. Start in Spy-Mode: It will start the System under Test (SUT) and allow you to
inspect its GUI. You have di↵erent commands available to display di↵erent information
about the GUI:

(a) Shift + 1 will show the set of actions that TESTAR recognizes, so you can check
which ones could be executed during a test. Actions like, for example, left/right
clicks, text inputs, drag and drops, etc.

(b) Shift + 2 highlights the widget under cursor. It also displays information about
the widget role and an array that represents the path to reach the widget in the
widget-tree representing the current displayed GUI.

(c) Shift + 3 displays information about properties of the widget under cursor (see
Section 5.2 for further information).

2. Start in Generation-Mode: This mode will start the SUT and execute a full test on
it. Switching to GenerateManual mode (Shift + Arrow Left) you will be able to take
the control at any time.

3. Start in Replay-Mode: This mode replays a previously recorded sequence. TESTAR
will ask you for the sequence to replay.

4. Start in View-Mode: The View-Mode allows you to inspect all steps of a previously
recorded sequence. Contrary to the Replay-Mode, it will not execute any actions, but
only show you the screenshots that were recorded during sequence generation. This is
ideal if a sequence turns out not to be reproducible.

3

Figure 1: TESTAR’s main screen

4 Setting up your tests

4.1 General Settings Tab

The Screenshot in picture 2 shows the tab with the general settings for TESTAR.

1. Path to the SUT: Pick the executable of the SUT or insert a custom command line
(p.e. java -jar ”suts/calc.jar”).

For web applications, follow the format

<Path to your Browser.exe><URL of your SUT>

in the field Path to the SUT.

4

*For API related problems, we recommend for now the use of Internet Explorer in
order to get the correct identification of widgets. For example:

”C:\Program Files\Internet Explorer\iexplore.exe” ”http://www.youtube.es/”

You can also put the window title of your SUT in this field following the format
”SUT WINDOW TITLE:must contain this text” However, you will need to have started
your SUT before any TESTAR operation.

2. Number of sequences to generate: How many times would you like to test your SUT?
A recommended value would be within the range 10 and 100. However, when you
have a new SUT it is better to start using a lower value (e.g. 3) in order to be able to
check if everything works as expected.

3. Sequence length: How many actions must be performed for each test sequence? After
having executed the given amount of actions, TESTAR will stop the SUT and proceed
with the next sequence (a value within 15 and 500 is recommended).

4. Force the SUT to the foreground: During test generation, the SUT’s windows might get
minimized or other processes might block its GUI. If you check this option, TESTAR
will force the SUT to the foreground.

5. Stop sequence generation on fault: If TESTAR detects an error, it will immediately
stop sequence generation.

6. Logging verbosity: Values 0, 1 (default) or 2. We recommended the value 1. Value 2
will write debugging information, while value 0 will be too brief. The log-files of each
sequence run can be found in the output directory and contain information about the
actions that were executed, the faults that were found and potential problems that
occurred during the test.

7. Edit the TESTAR Protocol: By clicking this button you will open the Protocol Editor.
As we will see later on in this Manual, this editor allows you to override and extend
the basic functionality in order to implement complex action sets and sophisticated
oracles, between others.

8. Load settings file. If you have a specific setup that you saved into a file, you can load
it here. This is ideal for switching between di↵erent settings for the same SUT or
between the settings of di↵erent SUTs.

9. Save the current settings to a file. Remark: TESTAR automatically saves all setting
changes you make. Thus, you do not explicitly have to save your settings to a file
every time you make an adjustment.

4.2 Filter Tab

In this tab, picture 3, you will find the following parameters:

1. Click-filter: TESTAR will not execute actions on any widget whose title matches
the given regular expression int this configuration parameter. Certain actions that
TESTAR could execute might be dangerous or undesirable, such as printing out docu-
ments, creating, moving or deleting files. To see whether or not your expression works,

5

Figure 2: General Settings Tab

simply start TESTAR in Spy-Mode, go to your desired GUI in the SUT and you will
be able to check the detected actions.

2. Processes to kill: TESTAR will kill any process whose name matches the given
regular expression. Some SUTs start other processes during test sequence generation.
These might popup in the foreground and block the SUTs GUI. They might also
consume excessive memory, etc.

4.3 Specifying simple Oracles

In order to detect faults, you need to tell TESTAR what to look for. In the “Oracle” tab
you can specify a simple oracle, which analyzes each state of the GUI and reports errors.

The screenshot in picture 4 shows TESTAR’s oracle settings:

6

Figure 3: Filters Tab

1. Suspicious Titles: In this text box you can enter a regular expression that describes
those messages that you consider to be related to possible errors. TESTAR will apply
this expression to each title of each widget on the screen. If it matches any widget’s ti-
tle, TESTAR will report an error and save the sequence for later inspection. For exam-
ple: Imagine you are looking for a critical message box with the title “A NullPointerEx-
ception Exception has been thrown”. You could simply add the expression “.*Null-
PointerException.*” which will match any title that contains the word “NullPoint-
erException” (the “.*” are placeholders for arbitrary characters). To learn more about
Regular Expressions see http://en.wikipedia.org/wiki/Regular_Expression

2. Freeze Time: TESTAR is able to detect crashes automatically, because it realizes
when the SUT is not running anymore. However, if the SUT does not really crash, but
just freezes (is unresponsive) for a long time, then TESTAR does not know whether
it is just carrying out heavy computations or hangs. If the SUT is unresponsive for
more than the given amount of seconds, TESTAR will consider it to be crashed and
mark the current sequence as erroneous (a value within 8 and 30 is recommended, but

7

http://en.wikipedia.org/wiki/Regular_Expression

it directly depends on the SUT and the related computation operations, as well as the
contextual environment performance).

Figure 4: Oracle Tab

4.4 Time Settings Tab

The time Settings tab, picture 5, allows the user to configure the following parameters:

1. Action Duration: The higher this value, the longer the execution of actions will
take. Mouse movements and typing become slower, so that it is easier to follow what
TESTAR is doing. This can be useful during Replay-Mode, in order to replay a
recorded sequence with less speed to better understand a fault.

2. Action Wait Time: Or time to wait after execution of an action. This is the time
that TESTAR pauses after having executed an action in Generation-Mode. Sometimes
it can make sense to give the GUI of the SUT more time to react, before executing
the next action. If this value is set to a value greater than 0, it can greatly enhance

8

reproducibility of sequences at the expense of longer testing times (a value within 1
and 10 is recommended).

3. SUT startup time: This is the time that TESTAR waits for the SUT to load. Large
and complex SUTs might need more time than small ones. Only after this time has
expired, TESTAR will start sequence generation. To calculate this value you can
start your SUT to find out how long it takes to boot. We recommended closing and
re-runing the SUT for a more precise startup time identification (due to application
catching into memory).

4. Maximum test time(seconds): TESTAR will cease to generate any sequences after
this time has elapsed. This is useful for specifying a test time out, e.g. “1 hour”, “one
day”, “one week”.

5. Use Recorded Action Timing during Replay: This option only a↵ects Replay-
Mode. If checked, TESTAR will use the action duration and action wait time that
was used during sequence generation. If you uncheck the option, you can specify your
own values.

Figure 5: Time Settings Tab

9

4.5 Miscellaneous Tab

This tab, picture 6, contains some settings that are less frequently used.

1. Output directory: This determines the directory where TESTAR outputs recorded
sequences, log-files and state snapshots. We do not recommend changing this.

2. Temporary Directory: TESTAR will use this directory to store temporary files
during the execution of sequences.

3. Files to copy before SUT start: When you start the SUT, sometimes it can be
useful to restore certain configuration files to their default, so that the SUT always
starts in the same state. Therefore you can define pairs of paths (copy from / to).
TESTAR will copy each specified file from the given source location to the given
destination. Simply click the text-area and a file dialog will pop up.

4. Files to delete before SUT start: Certain SUTs generate configuration files, tem-
porary files and files that save the system’s state. This might be problematic during
sequence replay, when you want a system to always start in the same state. Therefore,
you can specify these files, to be deleted before the SUT gets started. If you click the
text-area, a file dialog will pop up which allows selecting files and directories to be
deleted.

Figure 6: Misc Tab

10

4.6 Specifying Advanced Oracles

Figure 7: TESTAR’s protocol editor

All the settings presented so far help you to setup tests for automated testing to discover
crashes, freezes and undesired output. However, at some point you might need to implement
more complex actions or setup for more sophisticated oracles that can also test specific
functionality. TESTAR allows you to edit its protocol, i.e. the source code that determines
its behavior. The screenshot in picture 7 shows the Protocol Editor, which you can enter by
navigating to the “General Settings” tab and clicking the “Edit Protocol” button. It shows:

1. The Source Code of the Protocol.

2. The “Save and Compile” Button, which compiles the protocol and saves it to be used
during the next test.

3. The Error Console, which informs you about potential errors during compilation.

The source code used in the protocol is plain Java. The methods in the class each correspond
to the way TESTAR works and give you the possibility to adapt the default behavior. The
figure in picture 8 explains the basic worlflow of TESTAR and in Listing 1 you can find the
corresponding Java methods.

11

Figure 8: TESTAR’s workflow

As an example you can edit the method SUT startSystem() of the protocol when
login is required to test your system. That way TESTAR will do it automatically each time
a test sequence is started.

SUT sut = super.startSystem();

new CompoundAction.Builder()

.add(new Type("user"),0.1) //assume keyboard focus is on the user field

.add(new KeyDown(KBKeys.VK_TAB),0.5) //assume next focusable field is pass

.add(new Type("pass"),0.1)

.add(new KeyDown(KBKeys.VK_ENTER),0.5).build() //assume login performed by ENTER

.run(sut, null, 0.1);

return sut;

Listing 1: The Java Methods that can be customized

// initial setup before starting SUT test

01. void initialize(Settings settings)

// clean-up tasks for new test runs

02. void beginSequence()

// any action to be taken during SUT execution

03. SUT startSystem()

// step-by-step STATE of the SUT, with an attached ORACLE

04. State getState(SUT system)

// determines the STATE ORACLE verdict

05. Verdict getVerdict(State state)

// the set of available ACTIONs from a SUT’s STATE

06. Set<Action> deriveActions(SUT system, State state)

12

// which ACTION should be PERFORMED next (i.e. random, Search-Based)

07. Action selectAction(State state, Set<Action> actions)

// runs an ACTION from a SUT STATE, with return code (success?)

08. boolean executeAction(SUT system, State state, Action action)

// determines the stopping criteria

09. boolean moreActions(State state)

// finishing tasks for an ending test run

10. void finishSequence(File recordedSequence)

// determines whether to continue SUT testing (additional runs)

11. boolean moreSequences()

5 Running the tool

5.1 Action Visualization in Spy-Mode

When in Spy-Mode, TESTAR displays the detected actions (Shift + 1 to toggle visualiza-
tion). Each action type has a specific appearance, as described in the following table:

Green dot Left click
Yellow circle Right click
Red circle Left double click
Blue Arrow Drag & Drop Operation
Blue Text Click into text field and type some text
Gold circle Left click and right arrow

Table 1: Visualization in Spy-Mode

13

5.2 Widget tree visualization

As shown in picture 9 you can see several properties of the widget selected (Shift + 3 when
in Spy mode).

Figure 9: Widget’s properties

Note: This set of properties could be adapted to future needs.

In addition, TESTAR allows you to display the hierarchical relationships between wid-
gets (picture 10). By means of di↵erent colored rectangles, TESTAR frames the analyzed
widget (green color) with their ancestors and predecessors. This will be useful when you
wish to filter one widget and all the contents within it, among other cases. To enable this
feature you will need to press the ”Alt” key (check keyboard shortcuts).

14

Figure 10: Hierachical relationship between widgets

5.3 Test sequence generation and execution

Before running a complete test in the ‘Generate’-Mode you have to pay attention to a few
things:

1. Actions definition Define the set of actions that you want TESTAR to execute on
your SUT: Although you may like to setup a thorough test that fully stresses your SUT,
you might want to spare out certain actions, such as printing documents, terminating
the SUT (which might be detected as a crash by the oracle) or minimizing it, etc.
You might also want to only test a specific subset of all actions because you suspect
that faults in specific dialogs of the GUI are more likely to be triggered. You can use
the ClickFilter in the Filters tab to exclude actions on particular widgets (see section
4.2 for further details). You may also want to more precisely define the actions in the
protocol editor, particularly the method named ”deriveActions”.

2. Timing settings Define startup time, action duration or wait time after actions.
Those time settings might be important for your test, since they influence the repro-
ducibility of sequences. If you start sequence generation too early (before the SUT
has been fully loaded) or execute actions too fast / do not give the GUI enough time
to react, your generated sequences will still find faults. However, these faults might be
more exotic (a human user might not be able to trigger them at all) and are usually
very hard to reproduce since the timing aspect plays an important factor. (See section
4.4 to learn how to set these settings)

3. SUT starting point Make sure that the SUT always starts in the same initial state.
This is very important to guarantee reproducibility. The large majority of SUTs
remembers specific settings or saves the position of its windows as they have been
during the last session. If you do not restore the SUT’s settings to their defaults, a
previously recorded sequence might not be replayed properly, simply because the SUT

15

starts in a di↵erent state during sequence generation and sequence replay (e.g. starts
already with the last edited document opened). You can use the settings in the misc
tab to delete or restore the SUT’s settings files. Alternatively, you may want to edit
TESTAR protocol, thorugh its protocol editor, to programmatically perform suitable
tasks.

4. Making SUT ready for testing In some cases it is necessary to perform certain
actions soon after starting the SUT (e.g. when you need to login). To do this, you can
edit the method ”startSystem” of TESTAR protocol (see section 7 to find an example
of this).

5. Oracles definition Define your oracle: TESTAR automatically detects certain faults,
such as crashes. However, you might want to look for critical error messages or low
responsiveness. Sections 4.3 and 4.6 describe how to set up oracles that help you find
certain types of faults.

6. Stopping criteria Depending on how long you want TESTAR to run, you have to
adjust your stopping criteria. You might want to run it for 5 hours (then you can
use the Maximum Time setting in the General Settings tab) or have it generate 1000
sequences, etc. (See section 4.1 to learn how to set these settings)

7. Foresee tests It can be di�cult to verify whether TESTAR will do what you told it
to and thus you have to test your settings. Therefore you may use TESTAR inspection
features in order to inspect the set of actions that TESTAR will execute later on (hit
Shift + 1 to see the generated actions) or you can switch to the “Generate-Debug”
mode using Shift + Left Arrow / Right Arrow.

8. Take the testing control You can also generate the sequence manually by switching
to Generate-Manual (Shift + Left Arrow) mode. This way you can force TESTAR
to select certain actions that you might find interesting. Notice that you will have to
wait ActionWaitTime seconds between actions, if not some actions will be missed in
the recorded test sequence.

Generally, it will take some time until you have everything set up for a full test. Make
sure that you experiment with your settings in the Spy Mode and look for potential problems
that might arise. Take a look at the appendix, which lists helpful keyboard shortcuts (e.g.
stopping test generation etc.) that you can use once a test is running.

6 Viewing and replaying the results

During test generation in the Generate Mode, TESTAR will save all the sequences into the
output directory as you can see in picture 11 (See appendix for further information)

Once TESTAR has finished a test, you might want to inspect those generated sequences
to better understand faults or problems. There are basically four ways to do that:

1. Replay the sequence: Of course this is the preferred way, since it shows you directly
what TESTAR has generated. When you start TESTAR you can click on the Replay
Mode Button and TESTAR will ask you for the file to replay. Just select a sequence file
of your choice and hit ok and TESTAR will try to replay it. You can even slow down
the sequence in case it was recorded at a high speed (just increase the value for action

16

Figure 11: Output directory

duration). However, certain sequences might not be reproducible, because the SUT
is not in the correct starting state (have you considered deleting / restoring settings
files?) or the sequence was recorded too fast (increase the value of action duration and
action wait time during sequence generation). In that case you can follow the steps
shown on point 2.

2. View Screenshots of the Generated Sequence: Just hit the button for the View Mode.
Again TESTAR will ask you for a file of a recorded sequence. Browse to the location of
the file and hit ok. Now you will enter the View Mode, which will show you screenshots
of each state that the SUT has been in during sequence generation. Just keep hitting
“Next” to proceed to the next step, also you can go back to the previous action
by pressing “Back”. There are two additional buttons that allows us go to the end
(“End”) or the beginning (“Begin”) of the sequence.The View Mode will always work
and it allows you to see what happened on the screen during sequence generation,
which can be very helpful in case you are unable to replay a previously recorded
sequence.

3. Graph: Three di↵erent test sequence graphs are generated in order to let you see
which UI States were traversed and which actions were executed. Each one o↵ers you
a di↵erent level of information.

(a) Minimal: Contains the number of times that each state and action have been
visited or executed.

(b) Tiny: This graph adds states/actions identificators to the minimal graph.

(c) Screenshoted: Contains the same information as the ones above plus screenshots
of each state/action.

Additionally, these three graph versions are provided in abstracted versions: An ab-
stract graph groups similar states and actions for a more simplistic representation. It
helps to inspect too big graphs.

4. Log-files: TESTAR saves valuable information of each run on the log-file with the for-
mat yyyy mm dd hour min sec. (See section 4.1: Login Verbosity for further details).

17

7 Further documentation

For more infromation we have a FAQs page here:
http://webtestar.dsic.upv.es/index.php/faq/

Moreover, the most recent overview paper explaining TESTAR and how it has been used
in practice can be downloaded here:

http://webtestar.dsic.upv.es/wp-content/uploads/2015/06/testar_pub_ijismd2015.

pdf

8 Experimental features

TESTAR development is still ongoing. Currently we are working on various extensions.

1. AdhocTest mode: This mode allows sending commands to TESTAR through a client.
It activates a server to listen to test sequences (listening port: 47357). To send an order
use the format <action type(parameters*)>\r\n (i.e LC(500,420) would indicate to
TESTAR that it should left click at position 500,420).

2. ClickFilterLayerProtocol: Under Spy mode it enables you to add or remove a widget
to a taboo list. When a widget is within that list, TESTAR will not be able to perform
any action on it. On the other hand, we can add or remove a widget to a white list.
This will permit TESTAR to interact with that widget even though other general rules
should not allow it. Requirements: ClickFilterLayerProtocol and Spy mode, also you
will need <Shift+2 deactivated; Shift+1 activated>.Shortcuts: Shift + Ctrl switch
widget under cursor to White list. Ctrl switch widget under cursor to Black/Tabu
list. Press the same button to return it to its previous state.

3. Actions priorisation: Set priority to some actions to enable forms filling (text-input
fields and slides). I.e. new database user creation: name/surname, phone, direction,
etc.

4. QLearning: It is an alternative algorithm to random. This algorithm has di↵erent
criteria to choose which should be the following action to be executed (e.g. Max
reward, discount. . .). It needs further investigation to see if it provides improvements.
To learn more about QLearning see https://en.wikipedia.org/wiki/Q-learning.

9 Known issues

When using Java 8, an exception takes place when we open the protocol editor provided by
TESTAR. This error will be solved in further versions, however it does not a↵ect the editor,
so you will be able to use it without problems.

TESTAR might consume too much memory in long tests, so you could get an Out-
OfMemory error with long sequences (e.g. more than 5000 actions). To solve this problem
you can modify the file testar.bat by increasing the value of the argument “-Xmx” (e.g.
–Xmx2g).

18

http://webtestar.dsic.upv.es/index.php/faq/
http://webtestar.dsic.upv.es/wp-content/uploads/2015/06/testar_pub_ijismd2015.pdf
http://webtestar.dsic.upv.es/wp-content/uploads/2015/06/testar_pub_ijismd2015.pdf
https://en.wikipedia.org/wiki/Q-learning

10 Acknowledgements

Besides the current TESTAR developers, we want to mention Sebastian Bauersfeld who
worked on the initial versions of the tool due to financing under the FITTEST project ICT-
2009.1.2 no 257574. The current TESTAR team is being funded by di↵erent initiatives that
we will mention here. The SHIP project (SMEs and HEIs in Innovation Partnerships) (ref-
erence: EACEA/A2/UHB/CL 554187), whose objective is to transfer technologies from uni-
versity to companies. The PERTEST project (TIN2013-46928-C3-1-R) on software testing.
A proof of concept project financed by the Universidad Politecnica de Valencia (Programa
de Prueba de Concepto 2014, SP20141402).

19

11 Appendix

11.1 Keyboard shortcuts

Within the various modes, TESTAR accepts several shortcuts:

Shortcut E↵ect Modes
Shift + Arrow Down Quit TESTAR Spy, GenerateManual, Generate, Replay
Shift + Arrow Up Save snapshot of current Spy, GenerateManual,

state to output directory Generate, Replay
Shift + Switch Mode Spy, GenerateManual, Generate,
Arrow Left/Arrow Right GenerateDebug, Replay
Shift + 1 Toggle Action Visualization Spy
Shift + 2 Toggle visualization of Widget Spy

under Cursor
Shift + 3 Toggle widget information Spy
Shift + Enter Activates a server to listen to GenerateManual,Generate,

test sequences (port 47357) GenerateDebug,Spy
Alt Show hierarchical relationship Spy
Ctrl Add/remove widget title from Spy (requirement:

a filter list ClickFilterLayerProtocol)
Shift + Ctrl Add/Remove widget title from Spy (requirement:

a white list ClickFilterLayerProtocol)

Table 2: Shortcuts

11.2 Directories

./temp Temporary files such as the currently recorded sequence

./output TESTAR outputs log files, state snapshots and generated
sequences into this directory

./output/error sequences Sequences on which TESTAR
has found an error

./output/graphs TESTAR generate di↵erent graphs for each sequence

./output/srcshots Screenshots of each sequence showing every state and
the widgets that have been selected

./output/sequences Generated sequences

./resources If you have files for your SUT that need to be restored
through copying, you can put them in here

Table 3: Directories

20

urueda
Text

	Requirements
	Installing TESTAR
	Starting TESTAR
	Setting up your tests
	General Settings Tab
	Filter Tab
	Specifying simple Oracles
	Time Settings Tab
	Miscellaneous Tab
	Specifying Advanced Oracles

	Running the tool
	Action Visualization in Spy-Mode
	Widget tree visualization
	Test sequence generation and execution

	Viewing and replaying the results
	Further documentation
	Experimental features
	Known issues
	Acknowledgements
	Appendix
	Keyboard shortcuts
	Directories

