
1	

	

estT *
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

TESTAR	

User	
 Manual	

Version	
 1.1a	

	

	

Tanja	
 E.J.	
 Vos	

Urko	
 Rueda	
 Molina	

Mirella	
 Martínez	

Francisco	
 Almenar	

Anna	
 I.	
 Esparcia	

	

contact:	
 testar@staq.upv.es	

	

	

	
 	

2	

	

Table	
 of	
 Contents	

0.	
 REQUIREMENTS	
 3	

1.	
 INSTALLING	
 TESTAR	
 3	

2.	
 STARTING	
 TESTAR	
 3	

3.	
 SETTING	
 UP	
 YOUR	
 TESTS	
 4	

3.1	
 GENERAL	
 SETTINGS	
 TAB	
 4	

3.2	
 FILTER	
 TAB	
 6	

3.3	
 SPECIFYNG	
 SIMPLE	
 ORACLES	
 8	

3.4	
 TIME	
 SETTING	
 TAB	
 9	

3.5	
 MISCELLANEOUS	
 TAB	
 10	

3.6	
 	
 SPECIFYING	
 ADVANCED	
 ORACLES	
 AND	
 ACTION	
 SELECTION	
 11	

4.	
 RUNNING	
 THE	
 TOOL	
 14	

4.1	
 ACTION	
 VISUALIZATION	
 IN	
 SPY-­‐MODE	
 14	

4.2	
 WIDGET	
 TREE	
 VISUALIZATION	
 14	

4.3	
 TEST	
 SEQUENCE	
 GENERATION	
 AND	
 EXECUTION	
 15	

5.	
 VIEWING	
 AND	
 REPLAYING	
 THE	
 RESULTS	
 16	

6.	
 FURTHER	
 DOCUMENTATION	
 17	

7.	
 EXPERIMENTAL	
 FEATURES	
 18	

8.	
 KNOWN	
 ISSUES	
 18	

9.	
 ACKNOWLEDGEMENTS	
 18	

APPENDIX	
 19	

	

	

	
 	

3	

	

0. Requirements	

The current version of TESTAR runs on Windows 7 64 bit. To ensure that TESTAR
runs on your system you need to install the Java Development Kit (JDK) x64 in
version 1.8 (1.7 and 1.6 should also work).

1. Installing	
 TESTAR	

	

TESTAR comes in a file called TESTAR_vX.X_win_x64.zip, which contains all files
necessary for its execution. Just unzip this file into a directory with write-access.
There is no setup routine.

2. Starting	
 TESTAR	

Within the main directory you will find several files, which are crucial for the
execution of TESTAR. The most important one is testar.bat. Double-click on it
and TESTAR will start and display the main screen:

4	

	

As shown in the picture above, the main screen contains four buttons, which start
TESTAR into its four main modes:

1. Start in Spy-Mode: This mode does not execute any actions. It will start the

System under Test (SUT) and allows you to inspect the GUI. You can use
different commands in this mode to see more or less information:

o Shift + 1 will show the set of actions that TESTAR recognizes, so you can see

which ones will be executed during test.
o Shift + 2 highlights the widget under cursor. Also, you will be able to see its

role and an array that contains the path you need to follow in order to locate it
inside the widget tree.

o Shift + 3 displays information of the widget under cursor (see Section 4.2 for
further information).

2. Start in Generation-Mode: This mode will start the SUT and execute a full test

on the SUT. Switching to GenerateManual mode (Shift + Arrow Left) you will be
able to take the control at any time.

3. Start in Replay-Mode: This mode replays a previously recorded sequence.
TESTAR will ask you for the sequence to replay.

4. Start in View-Mode: The View-Mode allows you to inspect all steps of a
previously recorded sequence. Contrary to the Replay-Mode, it will not execute
any actions, but only show you the screenshots that were recorded during
sequence generation. This is ideal if a sequence turns out not to be reproducible.

3. Setting	
 up	
 your	
 tests	

	

3.1	
 General	
 Settings	
 TaB	

	

The Screenshot below shows the tab with the general settings for TESTAR

1. Path to the SUT: Pick the executable of the SUT or insert a custom command
line (p.e. java -jar "suts/calc.jar").

For web applications, follow the format

<Path_to_your_Browser.exe> <URL of your SUT>

in the field Path to the SUT. For API related problems, we recommend for

now the use of Internet Explorer in order to get the correct
identification of widgets. For example:

"C:\Program Files\Internet Explorer\iexplore.exe" "http://www.youtube.es/"

5	

	

2. Number of sequences to generate. A recommended value would be within the
range 10 and 100. However, when you have a new SUT it is better to start
using a lower value (e.g. 3) in order to be able to check if everything works as
expected.

3. Sequence length: After having executed the given amount of actions,

TESTAR will stop the SUT and proceed with the next sequence (a value
within 15 and 500 is recommended).

4. Force the SUT to the foreground: During test generation, the SUT’s windows

might get minimized or other processes might block its GUI. If you check this
option, TESTAR will force the SUT to the foreground.

5. Stop sequence generation on fault: If TESTAR detects an error, it will

immediately stop sequence generation.

6. Logging verbosity: The higher the value, the more information will be written
to the log-file. The log-files of each run can be found in the output directory
and contain information about the actions that were executed, the faults that
were found and potential problems that occurred during the test (however, we
do not recommend altering this number).

7. Edit the TESTAR Protocol: By clicking this button you will open the Protocol

Editor. As we will see later on in this Manual, this editor allows you to
override and extend the basic functionality in order to implement complex
action sets and sophisticated oracles.

8. Load settings file. If you have a specific setup that you saved into a file, you

can load it here. This is ideal for switching between different settings for the
same SUT or between the settings of different SUTs.

9. Save the current settings to a file.

Remark: TESTAR automatically saves all setting changes you make. Thus you do not
explicitly have to save your settings to a file every time you make an adjustment.
	

	

	

	

	

	

	

	

	

	

	

	

	

	

6	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

3.2	
 Filter	
 Tab	

In this tab you will be able to do the following two things:

1. Tell the tool which actions not to click because they might be dangerous or
undesirable (the click-filter)

2. Tell the tool which processes to kill during test generation (the process filter)

	

7	

	

	

	

	

	

1. Click-filter: Certain actions that TESTAR wants to execute might be dangerous or
undesirable, such as printing out documents, creating, moving or deleting files.
TESTAR will not execute clicks on any widget whose title matches the given
regular expression. To see whether or not your expression works, simply start
TESTAR in Spy-Mode, which will visualize the detected actions.

2. Processes to kill: Some SUTs start other processes during test sequence

generation. These might popup in the foreground and block the SUTs GUI.
They might also consume excessive memory, etc. TESTAR will kill any
process whose name matches the given regular expression.

	

	

	

	

	

8	

	

3.3	
 Specifyng	
 Simple	
 Oracles	
 	

	

In order to detect faults, you need to tell TESTAR what to look for. In the “Oracle”
tab you can specify a simple oracle, which analyzes each state of the GUI and reports
errors.

The screenshot below shows TESTAR’s oracle settings:
	

	

1. Suspicious Titles: In this text box you can enter a regular expression that

describes those messages that you consider to be related to possible errors.
TESTAR will apply this expression to each title of each widget on the screen. If
it matches any widget’s title, TESTAR will report an error and save the sequence
for later inspection. For example: Imagine you are looking for a critical message
box with the title “A NullPointerException Exception has been thrown”. You
could simply add the expression “.*NullPointerException.*” which will match
any title that contains the word “NullPointerException” (the “.*” are placeholders
for arbitrary characters). To learn more about Regular Expressions see
http://en.wikipedia.org/wiki/Regular_Expression

9	

	

2. Freeze Time: TESTAR is able to detect crashes automatically, because it realizes
when the SUT is not running anymore. However, if the SUT does not really
crash, but just freezes (is unresponsive) for a long time, then TESTAR does not
know whether it is just carrying out heavy computations or hangs. If the SUT is
unresponsive for more than the given amount of seconds, TESTAR will consider
it to be crashed and mark the current sequence as erroneous (a value within 8 and
30 is recommended).

	

3.4	
 Time	
 Setting	
 Tab	

	

The time Settings tabs, allows the user to configure the following:

	

1. Action Duration: The higher this value, the longer the execution of actions

will take. Mouse movements and typing become slower, so that it is easier to
follow what TESTAR is doing. This can be useful during Replay-Mode, in
order to replay a recorded sequence with less speed to better understand a
fault.

10	

	

2. Time to wait after execution of an action: This is the time that TESTAR
pauses after having executed an action in Generation-Mode. Sometimes it can
make sense to give the GUI of the SUT more time to react, before executing
the next action. If this value is set to a value > 0, it can greatly enhance
reproducibility of sequences at the expense of longer testing times (a value
within 1 and 10 is recommended).

3. SUT startup time: This is the time that TESTAR waits for the SUT to load.

Large and complex SUTs might need more time than small ones. Only after
this time has expired, TESTAR will start sequence generation. To calculate
this value you can start your SUT to find out how long it takes to boot.

4. Maximum test time (seconds): TESTAR will cease to generate any

sequences after this time has elapsed. This is useful for specifying a test time
out, e.g. “1 hour”, “one day”, “one week”.

5. Use Recorded Action Timing during Replay: This option only affects
Replay-Mode. If checked, TESTAR will use the action duration and action
wait time that was used during sequence generation. If you uncheck the
option, you can specify your own values.

	

3.5	
 Miscellaneous	
 Tab	

	

This tab contains some settings that are less frequently used.
	

1. Output directory: This determines the directory where TESTAR outputs
recorded sequences, log-files and state snapshots. We do not recommend
changing this.

2. Temporary Directory: TESTAR will use this directory to store temporary files

during the execution of sequences.

3. Files to copy before SUT start. When you start the SUT, sometimes it can be
useful to restore certain configuration files to their default, so that the SUT
always starts in the same state. Therefore you can define pairs of paths (copy
from / to). TESTAR will copy each specified file from the given source
location to the given destination. Simply click the text-area and a file dialog
will pop up.

4. Files to delete before SUT start: Certain SUTs generate configuration files,

temporary files and files that save the system’s state. This might be
problematic during sequence replay, when you want a system to always start
in the same state. Therefore, you can specify these files, to be deleted before
the SUT gets started. If you click the text-area, a file dialog will pop up which
allows selecting files and directories to be deleted.

11	

	

	

3.6	
 	
 Specifying	
 Advanced	
 Oracles	
 and	
 action	
 selection	

	

	

12	

	

All the settings presented so far help you to setup tests for automated testing to
discover crashes, freezes and undesired output. However, at some point you might
need to implement more complex actions or setup for more sophisticated oracles that
can also test specific functionality. TESTAR allows you to edit its protocol, i.e. the
source code that determines its behavior. The above screenshot shows the Protocol
Editor, which you can enter by navigating to the “General Settings” tab and clicking
the “Edit Protocol” button. It shows:

1. The Source Code of the Protocol

2. The “Save and Compile” Button, which compiles the protocol and saves it to
be used during the next test.

3. The Error Console, which informs you about potential errors during

compilation.

The source code used in the protocol is plain Java. The methods in the class each
correspond to the way TESTAR works and give you the possibility to adapt the
default behavior. The Java methods are in Listing 1 and the corresponding numbers in
the Figure below that explain the basic workflow of TESTAR.

As an example you can edit	
 the	
 method	
 SUT	
 startSystem()	
 of	
 the	
 protocol	
 to	
 check	

which	
 INPUT	
 actions	
 (i.e.	
 keystrokes,	
 text	
 inputs)	
 need	
 to	
 be	
 performed	
 on	
 the	

SUT.	

SUT	
 sut	
 =	
 super.startSystem();	
 	

new	
 CompoundAction.Builder()	
 	
 	
 	

.add(new	
 Type("user"),0.1)	
 //	
 assume	
 keyboard	
 focus	
 is	
 on	
 the	
 user	
 field	
 	
 	
 	

.add(new	
 KeyDown(KBKeys.VK_TAB),0.5)	
 //	
 assume	
 next	
 focusable	
 field	
 is	
 pass	
 	
 	
 	

.add(new	
 Type("pass"),0.1)	
 	
 	
 	

.add(new	
 KeyDown(KBKeys.VK_ENTER),0.5).build()	
 //	
 assume	
 login	
 performed	
 by	
 ENTER	
 	

.run(sut,	
 null,	
 0.1);	
 	
 	

return	
 sut;	

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

No

Yes

STOP
SUT

optional
instrumentation

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

Domain Experts Action
Definitions

Oracle

SUT

Replayable
Erroneous Sequences

03 04

05

06

07

0810

09

11

05

13	

	

	

	

	

Listing	
 1:	
 The	
 Java	
 Methods	
 that	
 can	
 be	
 customized	
 	

//	
 initial	
 setup	
 before	
 starting	
 SUT	
 test	

01.	
 void	
 initialize(Settings	
 settings)	

	

//	
 clean-­‐up	
 tasks	
 for	
 new	
 test	
 runs	

02.	
 void	
 beginSequence()	

	

//	
 any	
 action	
 to	
 be	
 taken	
 during	
 SUT	
 execution	

03.	
 SUT	
 startSystem()	

	

//	
 step-­‐by-­‐step	
 STATE	
 of	
 the	
 SUT,	
 with	
 an	
 attached	
 ORACLE	

04.	
 State	
 getState(SUT	
 system)	

	

//	
 determines	
 the	
 STATE	
 ORACLE	
 verdict	

05.	
 Verdict	
 getVerdict(State	
 state)	

	

//	
 the	
 set	
 of	
 available	
 ACTIONs	
 from	
 a	
 SUT's	
 STATE	

06.	
 Set<Action>	
 deriveActions(SUT	
 system,	
 State	
 state)	

	

//	
 which	
 ACTION	
 should	
 be	
 PERFORMED	
 next	
 (i.e.	
 random,	
 Search-­‐Based)	

07.	
 Action	
 selectAction(State	
 state,	
 Set<Action>	
 actions)	

	

//	
 runs	
 an	
 ACTION	
 from	
 a	
 SUT	
 STATE,	
 with	
 return	
 code	
 (success?)	

08.	
 boolean	
 executeAction(SUT	
 system,	
 State	
 state,	
 Action	
 action)	

	

//	
 determines	
 the	
 stopping	
 criteria	

09.	
 boolean	
 moreActions(State	
 state)	

	

//	
 finishing	
 tasks	
 for	
 an	
 ending	
 test	
 run	

10.	
 void	
 finishSequence(File	
 recordedSequence)	

	

//	
 determines	
 whether	
 to	
 continue	
 SUT	
 testing	
 (additional	
 runs)	

11.	
 boolean	
 moreSequences()	

14	

	

4. Running	
 the	
 tool	

4.1	
 Action	
 Visualization	
 in	
 Spy-­‐Mode	

	

When in Spy-Mode, TESTAR displays the detected actions (Shift + 1 to toggle
visualization). Each action type has a specific appearance, as described in the
following table:

Green dot Left click
Yellow circle Right click
Red circle Left double click
Blue Arrow Drag & Drop Operation
Blue Text Click into text field and type

some text
Gold circle Left click and right arrow

	

4.2	
 Widget	
 Tree	
 Visualization	

	

As	
 shown	
 in	
 the	
 following	
 picture	
 you	
 can	
 see	
 several	
 properties	
 of	
 the	
 widget	

selected	
 (Shift	
 +	
 3	
 when	
 in	
 Spy	
 mode).	

	

	

	

Note:	
 This	
 set	
 of	
 properties	
 could	
 be	
 	
 adapted	
 to	
 future	
 needs.	

	

15	

	

In addition, TESTAR allows you to display the hierarchical relationships between
widgets. By means of different colored rectangles, TESTAR frames the analyzed
widget (green color) with their ancestors and predecessors. This will be useful when
you wish to filter one widget and all the contents within it, among other cases.
	

	

	

4.3	
 Test	
 Sequence	
 Generation	
 and	
 Execution	

	

Before running a complete test in the ‘Generate’-Mode you have to pay attention to a
few things:

1. Define the set of actions that you want TESTAR to execute on your SUT:
Although, you want to setup a thorough test that fully stresses your SUT, you
might want to spare out certain actions, such as printing documents,
terminating the SUT (which might be detected as a crash by the oracle) or
minimizing it, etc. You might also want to only test a specific subset of all
actions because you suspect that faults in specific dialogs of the GUI are more
likely to be triggered. You can use the ClickFilter in the Filters tab to exclude
actions on particular widgets (see section 3.2 for further details).

2. Define startup time, action duration or wait time after actions. Those time

settings might be important for your test, since they influence the
reproducibility of sequences. If you start sequence generation too early (before
the SUT has been fully loaded) or execute actions too fast / do not give the
GUI enough time to react, your generated sequences will still find faults.
However, these faults might be more exotic (a human user might not be able
to trigger them at all) and are usually very hard to reproduce since the timing
aspect plays an important factor. (See section 3.4 to learn how to set these
settings)

3. Make sure that the SUT always starts in the same initial state. This is very

important to guarantee reproducibility. The large majority of SUTs remembers
specific settings or saves the position of its windows as they have been during
the last session. If you do not restore the SUT’s settings to their defaults, a

16	

	

previously recorded sequence might not be replayed properly, simply because
the SUT starts in a different states during sequence generation and sequence
replay (e.g. starts already with the last edited document opened). You can use
the settings in the misc tab to delete or restore the SUT’s settings files.

4. In some cases it is necessary to perform certain actions soon after starting the

SUT (p.e when you need to login). To do this, you can edit the method SUT
startSystem() of CustomProtocol (see section 6 to find an example of this).

5. Define your oracle: TESTAR automatically detects certain faults, such as

crashes. However, you might want to look for critical error messages or low
responsiveness. Sections 3.3 and 3.6 describe how to set up oracles that help
you find certain types of faults.

6. Stopping criteria: Depending on how long you want TESTAR to run, you have

to adjust your stopping criteria. You might want to run it for 5 hours (then you
can use the Maximum Time setting in the General Settings tab) or have it
generate 1000 sequences, etc. (See section 3.1 to learn how to set these
settings)

7. It can be difficult to verify whether TESTAR will do what you told him to and

thus you have to test your settings. Therefore you may use the “View” mode
in order to inspect the set of actions that TESTAR will execute later on (hit
Shift + 1 to see the generated actions) or you can switch to the “Generate-
Debug” mode using Shift + Left Arrow / Right Arrow.

8. You can also generate the sequence manually by switching to Generate-

Manual (Shift + Left Arrow) mode.	
 This way you can force TESTAR to select
certain actions that you might find interesting.

Generally, it will take some time until you have everything set up for a full test. Make
sure that you experiment with your settings in the View Mode and look for potential
problems that might arise. Take a look at the appendix, which lists helpful keyboard
shortcuts (e.g. stopping test generation etc.) that you can use once a test is running.

5. Viewing	
 and	
 Replaying	
 the	
 Results	

	

During test generation in the Generate Mode, TESTAR will save all the sequences
into the output directory as you can see in the screenshot below (See appendix for
further information)

17	

	

Once TESTAR has finished a test, you might want to inspect those generated
sequences to better understand faults or problems. There are basically four ways to do
that:

1. Replay the sequence: Of course this is the preferred way, since it shows you
directly what TESTAR has generated. When you start TESTAR you can click
on the Replay Mode Button and TESTAR will ask you for the file to replay.
Just select a sequence file of your choice and hit ok and TESTAR will try to
replay it. You can even slow down the sequence in case it was recorded at a
high speed (just increase the value for action duration). However, certain
sequences might not be reproducible, because the SUT is not in the correct
starting state (have you considered deleting / restoring settings files?) or the
sequence was recorded too fast (increase the value of action duration and
action wait time during sequence generation). In that case you can follow the
steps shown on point 2.

2. View Screenshots of the Generated Sequence: Just hit the button for the View

Mode. Again TESTAR will ask you for a file of a recorded sequence. Browse
to the location of the file and hit ok. Now you will enter the View Mode, which
will show you screenshots of each state that the SUT has been in during
sequence generation. Just keep hitting “Next” to proceed to the next step. The
View Mode will always work and it allows you to see what happened on the
screen during sequence generation, which can be very helpful in case you are
unable to replay a previously recorded sequence.

3. Graph: Three	
 different	
 test	
 sequence	
 graphs	
 are	
 generated	
 in	
 order	
 to	
 let	

you	
 see	
 which	
 UI	
 States	
 were	
 traversed	
 and	
 which	
 actions	
 were	
 executed.	

Each	
 one	
 offers	
 you	
 a	
 different	
 level	
 of	
 information.

	

3.1	
 Minimal:	
 Contains	
 the	
 number	
 of	
 times	
 that	
 each	
 state	
 and	

action	
 have	
 been	
 visited	
 or	
 executed.	

3.2	
 Tiny:	
 Adds	
 states/actions	
 identificators	
 to	
 the	
 minimal	
 graph	

3.3	
 Screenshoted:	
 Contains	
 the	
 same	
 information	
 as	
 the	
 ones	

above	
 plus	
 screenshots	
 of	
 each	
 state/action.

4. Log-files: TESTAR saves valuable information of each run on the log-file

with the format yyyy_mm_dd_hour_min_sec. (See section 3.1: Login
Verbosity for further details)

6. Further	
 documentation	

	

For	
 more	
 infromation	
 we	
 have	
 a	
 FAQs	
 page	
 here:	
 	

	

http://webtestar.dsic.upv.es/index.php/faq/	

	

Moreover,	
 the	
 most	
 recent	
 overview	
 paper	
 explaining	
 TESTAR	
 and	
 how	
 it	
 has	

been	
 used	
 in	
 practice	
 can	
 be	
 downloaded	
 here:	

	

http://webtestar.dsic.upv.es/wp-­‐content/uploads/2015/06/testar_pub_ijismd2015.pdf	

18	

	

7. Experimental	
 Features	

	

TESTAR development is still ongoing. Currently we are working on various
extensions.

AdhocTest mode: This mode allows sending commands to TESTAR through a
client. It activates a server to listen to test sequences (listening port: 47357). To send
an order use the format <action_type(parameters*)>\r\n (i.e LC(500,420) would
indicate to TESTAR that it should left click at position 500,420).

ClickFilterLayerProtocol:	
 Under	
 Spy	
 mode	
 it	
 enables	
 you	
 to	
 add	
 or	
 remove	
 a	

widget	
 title	
 to	
 a	
 filter	
 list	
 (displayed	
 at	
 console).	
 Shortcuts:	
 Shift+Left	
 Click	
 to	
 add	

it	
 and	
 Shift	
 +	
 Left	
 Click	
 to	
 remove	
 it.	

QLearning: It is an alternative algorithm to random. This algorithm has different
criteria to choose which should be the following action executed. It needs further
investigation to see if it provides improvements. To learn more about QLearning see
https://en.wikipedia.org/wiki/Q-learning

8. Known	
 Issues	

	

When using Java 8, an exception takes place when we open the protocol editor
provided by TESTAR. This error will be solved in further versions, however it does
not affect the editor, so you will be able to use it without problems.

TESTAR can consume too much memory, so you can get an OutOfMemory error
with long sequences (e.g. 3000 actions). To solve this problem you can modify the
file testar.bat by increasing the value of the argument “-Xmx” (e.g. –Xmx2g).

9. Acknowledgements	

	

Besides the current TESTAR developers, we want to mention Sebastian Bauersfeld
who worked on the initial versions of the tool due to financing under the FITTEST
project ICT-2009.1.2 no 257574. The current TESTAR team is being funded by
different initiatives that we will mention here. The SHIP project (SMEs and HEIs in
Innovation Partnerships) (reference: EACEA/A2/UHB/CL 554187), whose objective
is to transfer technologies from university to companies. The PERTEST project
(TIN2013-46928-C3-1-R) on software testing. A proof of concept project financed by
the Universidad Politecnica de Valencia (Programa de Prueba de Concepto 2014,
SP20141402).
	
 	

19	

	

APPENDIX	

	

Keyboard	
 Shortcuts	

	

Within the various modes, TESTAR accepts several shortcuts:

Shortcut Effect Modes
Shift + Arrow
Down

Quit Monkey Spy, GenerateManual,
Generate, Replay

Shift + Arrow Up Save snapshot of
current state to output
directory

Spy, GenerateManual,
Generate, Replay

Shift + Arrow
Left / Arrow
Right

Switch Mode Spy, GenerateManual,
Generate, GenerateDebug,
Replay

Shift + 1 Toggle Action
Visualization

Spy

Shift + 2 Toggle visualization of
Widget under Cursor

Spy

Shift + 3 Toggle widget
information

Spy

Shift + Enter Activates a server to
listen to test
sequences (port 47357)

GenerateManual,Generate,
GenerateDebug, Spy

Ctrl Show hierarchical
relationship

Spy

Shift + Left
Click

Add widget title to a
filter list

Spy (requirement:
ClickFilterLayerProtocol)

Shift + Rigth
Click

Remove widget title
from a filter list

Spy (requirement:
ClickFilterLayerProtocol)

For a more visual representation of the switch mode see this flowchart

	

	

20	

	

	

Directories	

	

./temp Temporary files such as the currently

recorded sequence
./output TESTAR outputs log files, state snapshots

and generated sequences into this directory
./output/error_sequences Sequences on which TESTAR has found an

error
./output/graphs TESTAR generate different graphs for each

sequence
./output/srcshots Screenshots of each sequence showing every

state and the widgets that have been
selected

./output/sequences Generated sequences

./resources If you have files for your SUT that need to
be restored through copying, you can put
them in here.

	

	

