UNIVERSITAT ~ Open Universiteit
POL|TECN]CA www.ou.nl
DE VALENCIA

est

Automated Testing at the GUI level

Hands-on do it yourself session

4th of September 2017
A-TEST, FSE, Paderborn

Ramoén de Vries, Floren de Gier and Tanja E. J.
Vos

Contents

[1 Objective of this Session| 3
2 at is esting’ 3
[3 Handson step by step| 3
[3.1 Manually test the SUT|. 3
3.2 Starting up TESTAR|. 3
B3 TheSPY Modd« oo vvo e 4
B4 _The GENERATE-TEST modd 4
3.5 Design a Test Oracle| 6
3.6 Adjust TESTAR’s Behavior| 7
[3.7 The test.settings file], .. 7
[B.8 7 Find as many Faults as possible and reproduce them| . . . 7
[3.9 P Play with the Tool and Test Microsoft Paint or Notepad| . 9
[3.10 Testing web applications| 9
|3.11 Editing the protocol| 0. 9
[3.11.1 Editing the protocol to logon| 9

[3.11.2 Editing the protocol to add an oracle]. 10

1 Objective of this Session

The objective of this session is to get first impressions of the challenges
associated with GUI testing. You will be using a given System Under Test
(SUT) with several faults. Your task is to setup a test which finds the faults
within this SUT. To achieve this, you will use TESTAR which automatically
stresses GUI-based applications and can — once setup correctly — detect
specific types of errors. Your goal is to find as many errors as possible and
reproduce them using TESTAR.

2 What is GUI Testing?

GUI Testing is a testing technique where one tests the SUT solely through its
Graphical User Interface (GUI). The only way to find errors is to thoroughly
observe the status of the GUI throughout the test. This type of testing
is usually carried out manually, where a tester just follows a previously
written ”test case” and verifies whether the application responds to all inputs
as expected. On the one hand GUI testing is a relatively straightforward
process, since one does not need to read or test the source code of the SUT.
On the other hand it is quite laborious, time consuming and, well... boring...

Therefore, in this assignment we will try to automate GUI testing by
using a tool called TESTAR E TESTAR is a random testing or fuzzing
tool. It automatically generates input sequences for the SUT by clicking
and typing on the controls of the GUI. It is able to recognize when the SUT
behaves unusual and reports this to you, the tester.

3 Handson step by step

3.1 Manually test the SUT

Before using TESTAR, you will test the SUT manually, to get an impression
of potential faults. Double click the file ”calc - Shortcut” on the Desktop
and test the application. How many and what type of failures can you find?

3.2 Starting up TESTAR

Now let us start up TESTAR to see what it can do. Navigate to and execute
the file testar.bat. The GUI of TESTAR starts up. Basically this is a dialog
that enables us to configure the values that are present in the test.settings
file. These settings define values that tell TESTAR about the SUT we want
to test, and define details about how we want to do that.

!TESTAR is a result of the european project FITTEST http://crest.cs.ucl.ac.uk/
fittest/

http://crest.cs.ucl.ac.uk/fittest/
http://crest.cs.ucl.ac.uk/fittest/

Scan GUI Derive set
Start N I N

o1 SUT > and initialize > of user
current state > actions

v
Update Select
current action

T T, T [E
estmrg Execute
action

I

Get test @ Scan GUI
metrics to get new
state
Stop |+ Evaluate
SUT | AL (Oracle)

Figure 1: TESTAR test cylce

Let us start by clicking on the SPY button (the one with the magnifying
class). This one enables us to spy the buttons of the SUT and see all the
information that there is... Hover the buttons and look for yourself.

3.3 The SPY Mode

The SPY mode allows you to inspect the controls of the GUI. In the spy
mode you can hit + (1) to see what actions TESTAR chooses from. If
you hit + (3] and hover over an element it will show detailed information
about that element. This way you can find the titles of the elements. To go
back to less information just hit + 2).

To see a display of the widget tree there is + (4.

To stop TESTAR, hit +). You can find more shortcuts in the
appendix of this assignment. It is a good idea to become familiar with this
Mode and its shortcuts.

3.4 The GENERATE-TEST mode

In this mode, the TESTAR tool carries out automated testing following the
test cycle depicted in Figure

Basically, it derives a set of possible actions for the current state that
the GUI of the SUT is in. Then, it automatically selects and executes an
action from this set which makes the SUT go to a new GUI state. This
new state is evaluated with the available oracles. If no fault is found, again
a set of possible actions for the new state is derived, one action is selected
and executed, etc. This continues until a fault has been found or until a

stopping criteria is reached. With the right test set up all you will need to
do is to wait for your tests to finish.

The default behaviour includes random selection of actions and implicit
oracles for the detection of the violation of general-purpose system require-
ments: like that the SUT should not crash, the SUT should not find itself
in an unresponsive state (freeze) and the UI state should not contain any
widget with suspicious titles like error, problem, exception, etc.

Now let us do some automated testing. From the SPY mode you can go
to various GENERATE-TEST modes by hitting (Shift) -+ (Arrow Right) . The
Figure below shows how they relate:

shift = right

Shift + right Shift + right

,/'
Generate

shift + left

Shift + enter

Adhoc Test

shift + left

You can interact during the tests at any time, or even stop them through
the panic keyboard shortcut (Shifj + (iJ). The main working modes that
apply for the running tests are presented next, and you can switch between

them through the keyboard shortcuts + (or +[=)).

e Generate. The default operation mode. Runs tests as specified by
the test set up.

e GenerateManual. You will take over TESTAR control and manually
perform some actions during a test. This is particularly interesting if
you want to force the test to move to a concrete part of the UI and/or
if you want to move the test out of the current Ul

e GenerateDebug. Similar to the Generate mode, but you will be
able to display the UI actions (+) and color codes are applied
during the test:

green for Ul actions that the test can execute,
red for the current Ul action being executed, and
(alpha) blue for UI actions that were already executed.

e Slow motion. Hit + to (de)activate a delay between the
executed Ul actions, which will aid to supervise the test execution of

more critical Ul parts.

Run some tests. These are monkey test. TESTAR can see the controls of
the SUT’s GUI and can automatically detect possible actions. It randomly
selects and executes these actions.

In the tab ”Time Settings” you can set the action duration and the time
that TESTAR waits after executing each action. Play with the settings and
observe what happens.

Until now you should have familiarized yourself a bit with the tool. TES-
TAR does not only generate random sequences, it also records every action it
executes and can thus replay sequences. The directory ”output/sequences”
contains all sequences that the tool generated.

?» HANDSON: Record 1 sequence of at max 30 actions and then replay
it. To replay it you can use the Replay button and specify the path to the
sequence.

3.5 Design a Test Oracle

The default behavior of TESTAR. is not very useful. In order to detect
faults, TESTAR needs a so-called Test Oracle. The Oracle tells whether a
specific state is correct, faulty or suspicious. TESTAR comes with a default
Oracle which detects when the application crashes — meaning when it is
not running or does not react anymore. Although this will detect simple
faults it will not detect others. If you played with the SUT a bit, you
probably detected a few faults on your own, such as dialogs with exception
messages. To detect such faults one can simply scan the current GUI state
for specific words, such as ”exception” or ”error” or ” NullPointerException”,
etc. The tab ”Oracle” has a field ” Suspicious Titles” in which you can write
Java Regular Expressions. TESTAR will apply these expressions after the
execution of each action in order to find potential matches.

Example: .x[Fflaultystring.*|SomeOtherFaultyString

This expression will make TESTAR look for the string ”Faultystring”
(upper- or lowercase) anywhere on the screen in any position as well as for
the exact match ”SomeOtherFaultyString”. If TESTAR encounters such a
string, it will complain and save the corresponding sequence under ”out-
put/sequences_suspicioustitle”.

> HANDSON: Write regular expressions for the errors that you have
encountered in the SUT. Run some tests. Did you find any error with your
oracles?

3.6 Adjust TESTAR’s Behavior

You might have observed, that from time to time, TESTAR executes ”un-
desirable” actions. The tool minimizes or even terminates the application,
which is not optimal for the testing process. Even worse: If you observed
the tool’s output you might have noticed that it detects a ”crash” whenever
it closes the main window. Obviously the tool does not know that closing
the main window terminates the application. In the tab ”Filters” you can
find the setting ”Click Filter” which is similar to the ”Suspicious Titles”
field. TESTAR will ignore all actions that exercise control elements whose
title matches the given expression.

Example: .*Backspace.*|.*CE.*| .*View.x*

This expression will ignore clicks to all control elements whose titles con-
tain the given strings.

? HANDSON: Configure TESTAR such that it does not close or min-
imize the window anymore. In addition disallow clicks to the ”Open File”
menu item, to prevent TESTAR to ”go wild” on the operating system’s files.

Use the Spy Mode to see whether your ClickFilters have an effect (” Shift
+ 17 to visualize the actions)!

3.7 The test.settings file

As indicated before, the GUI of TESTAR is basically a dialog that enables
us to configure the values that are present in the test.settings file.

If you want you can also edit these directly. For now, to illustrate we
refer to Figure [2 where you can see part of the test.settings file for the
calculator application. All the settings are explained in detail in the manual
also.

3.8 7 Find as many Faults as possible and reproduce them

Now that you know how to use the tool your task is to setup a longer test,
e.g. 30 sequences with a length of 50 actions (whatever you please). Run
the tool and observe its output! Does it find and report the faults? Can you
replay the erroneous sequences and reproduce the errors? If the tool does
undesirable things, improve your setup and restart the test. At the end of
this task you should have a folder with several erroneous sequences that can
be replayed and expose errors of the SUT.

HHHHEHHEHHEEEEEREEEEEHEEHHEHHEHREEEEEEEHHEHHE R
TESTAR mode

#

Set the mode you want TESTAR to start in: Spy, Generate, Replay
B T s s s s s s s s

Mode = Spy

HHHAHBHHAH R HBHH AR B HBHHAHBEHAH B HBHHAH RS H B R AR RS H R R B H RS H B
Connect to the System Under Test (SUT)

Indicate how you want to connect to the SUT:

SUTCONNECTOR = COMMAND_LINE, SUTConnectorValue property must be a
commandline that starts the SUT. It should work from a Command Prompt
terminal window (e.g. java - jar SUTs/calc.jar).

For web applications, follow the next format: web_browser_path SUT_URL.

SUTCONNECTOR = SUT_WINDOW_TITLE, then SUTConnectorValue property must be
the title displayed in the SUT’ main window. The SUT must be manually
started and closed.

SUTCONNECTOR = SUT_PROCESS_NAME: SUTConnectorValue property must be the
process name of the SUT. The SUT must be manually started and closed.
B S S s s s s s

H oH HF O H HH O HHHHEHH

SUTConnector = COMMAND_LINE
SUTConnectorValue = java -jar "C:\\Users\\Tania\\Desktop\\calc.jar"

B
Sequences

#

Number of sequences and the length of these sequences

B S s S s S S s s R

Sequences = 6
Sequencelength = 100

I
Oracles based on suspicious titles

#

Regular expression
IR

SuspiciousTitles = .[eElrror.*|.*[eE]lxception.

R
Actionfilter

#

Regular expression. More filters can be added in Spy mode,

these will be added to the protocol_filter.xml file.
##################################g##############################

ClickFilter = .[cCllose.*|.*[cClerrar.*|.*x[fF]ile.*|.*x[aA]lrchivo.*
| .*Minimize.*|.*[mM] inimizar.

Figure 2: Part of the test.settings file

3.9 « Play with the Tool and Test Microsoft Paint or Notepad

Obviously, what we have done so far was rather simplistic and does not find
very complex faults. In addition the SUT was very simple as well. However,
TESTAR can test more complex SUTs. You can change the path to another
SUT if you like to see what happens when you test something like:

e Microsoft Paint

e Notepad

Be careful, though, the tool might perform dangerous and unexpected
actions!

3.10 Testing web applications

Bitrix24 is a complete suite of social collaboration, communication and man-
agement tools for your team.

We have already configured a test.settings file for TESTAR for bitrix24.

Start TESTAR up with the bitrix24 settings.

Starting testar.bitrix24.com we get a screen that asks us to login.
Evidently, letting TESTAR guess values randomly will take us a long time
to enter. We would like TESTAR to enter when it starts up the system. For
this we can edit the protocol that TESTAR uses to implement the test-cycle
from Figure [1} In the next section this is explained.

3.11 Editing the protocol

TESTAR offers a more detailed API in the form of a Java protocol. In the
”General Settings” dialog you can click the ”"Edit Protocol” button to see
the default source code that the tool uses to perform its tests. The source
code allows you to write much more fine-grained oracles and definitions for
drag and drop actions etc.

Read section 4 of the TESTAR user manual, there the different parts of
the protocol are explained.

3.11.1 Editing the protocol to logon

For example, if we want to do the login to bitrix when we start up the
system we need to edit the start_System() method (from section 4.3 of
the TESTAR manual).

7 Let us add a piece of code so we can do the login. The TESTAR
has a user account with: username: tvos@pros.upv.es and password:
testarbitrix24. Section 4.3 of the manual gives the following example:

testar.bitrix24.com

new CompoundAction. Builder ()
.add (new Type("my_user”),0.1) //assume keyboard focus is
//on the user field

.add (new KeyDown(KBKeys. VK TAB) ,0.5) //assume next focusable field is pass

.add (new Type(”my_user.pass”),0.1)

.add (new KeyDown (KBKeys. VK ENTER) ,0.5). build () //assume login is
//performed by ENTER

.run(sut, null, 0.1);

return sut;

You need to make a new CompoundAction builder, that contains a series
of actions that you want to execute when the system starts up. Note that
when the username is being typed, it is assumed that keyboard focus is on
the user field, but this may not be the case when you start up. You might
need to add some TABs before to make sure that this assumption holds.

Also maybe you need to add some Util.pause (number) to give the web-
site time to render completely before you execute some CompoundAction.

3.11.2 Editing the protocol to add an oracle

If we want to add oracles other than those that can be represented with the
regular expressions, we can edit the get_Verdict () method (section 4.6 of
the TESTAR manual).

Let us look at a small example, where we want to check in every state
that the widgets that contains some text (i.e. its NativeRole is " UIAText”)
can fit a font size that is at least the MINIMUM_FONT_SIZE. This can be done
by writing the following piece of code returning a Verdict.

Verdict getSmallTextVerdict (State state
Widget w,
Role role ,
Shape shape){

final int MINIMUMFONTSIZE = 8; // px
if (role != null

&& role.equals(NativeLinker.getNativeRole (” UIAText”))

&& shape.height () < MINIMUM FONT_SIZE
)

return new Verdict(Verdict .SEVERITY WARNING,

"Not all texts have a size greater than

+ MINIMUM_FONT SIZE + 7"px”);
else return Verdict.OK;

}

10

b

Then we can call this method in a get_Verdict while loop for every
state.

Role role;
String title;
Shape shape;

// apply the oracles to all widgets
for (Widget w : state){

role = w.get(Tags.Role, null);
title = w.get (Title, 77);
shape = w.get (Tags.Shape, null);

// check for too small texts to be legible
verdict = verdict.join (getSmallTextVerdict (state

role
shape)
)

}

return verdict;

7 Try to add a piece of code that defines an oracle that checks whether
every image on the screen (i.e. its NativeRole is "UIAImage”) has an ad-
ditional textual description according to the WAI guidelines for accesible
webpages.

11

	Objective of this Session
	What is GUI Testing?
	Handson step by step
	Manually test the SUT
	Starting up TESTAR
	The SPY Mode
	The GENERATE-TEST mode
	Design a Test Oracle
	Adjust TESTAR's Behavior
	The test.settings file
	147 Find as many Faults as possible and reproduce them
	147 Play with the Tool and Test Microsoft Paint or Notepad
	Testing web applications
	Editing the protocol
	Editing the protocol to logon
	Editing the protocol to add an oracle

